

Recent results from Belle

Denis Epifanov The University of Tokyo on behalf of Belle collaboration

Outline:

- Study of bottomonia and exotic Z_b[±]
- Search for New Physics in $B \to D^{(*)} \, \tau \, \nu$
- Search for dark photon and dark Higgs

Belle experiment

Study of $\sigma(e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-)$ and $\sigma(e^+e^- \rightarrow b\overline{b})$ in the region of $\Upsilon(5S)$ and $\Upsilon(6S)$ resonances

Anomalous $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$ rates were previously observed at Belle.

 $R_{\Upsilon\pi\pi} = \sigma(e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-)/\sigma_{\mu\mu}$ and $R_b = \sigma(e^+e^- \rightarrow bb)/\sigma_{\mu\mu}$ were measured in the region of $\Upsilon(5S)$ and $\Upsilon(6S)$. Mass and width of $\Upsilon(5S)$ were measured precisely.

 $\begin{array}{c|c} \mbox{PRL100,112001(2008)} & \Gamma(\mbox{MeV}) \\ \hline \Upsilon(5S) \to \Upsilon(1S)\pi^{+}\pi^{-} & 0.59 \pm 0.04 \pm 0.09 \\ \Upsilon(5S) \to \Upsilon(2S)\pi^{+}\pi^{-} & 0.85 \pm 0.07 \pm 0.16 \\ \hline \Upsilon(5S) \to \Upsilon(3S)\pi^{+}\pi^{-} & 0.52^{+0.20}_{-0.17} \pm 0.10 \\ \hline \Upsilon(2S) \to \Upsilon(1S)\pi^{+}\pi^{-} & 0.0060 \\ \Upsilon(3S) \to \Upsilon(1S)\pi^{+}\pi^{-} & 0.0009 \\ \Upsilon(4S) \to \Upsilon(1S)\pi^{+}\pi^{-} & 0.0019 \end{array}$

- (1) Rescattering Υ(5S)→BBππ→Υ(nS)ππ Simonov JETP Lett 87,147(2008); Meng et al. Phys.Rev.D78:034022,2008
- (2) Exotic resonance Y_b near $\Upsilon(5S)$ analogue of Y(4260) resonance with anomalous $\Gamma(J/\psi \pi^+\pi^-)$

Hou et al., Phys.Rev.D74:017504,2006 Ali et al. Phys.Rev.Lett.104:162001,2010

(3) Tetraquarks

Karliner et al. arXiv:0802.0649v2; N. Brambilla et al, Eur.Phys.J. C71 (2011) 1534

Uncontrollable systematic error of the resonance masses and widths due to large contribution from continuum with unknown shape

Study of $\sigma(e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-)$ and $\sigma(e^+e^- \rightarrow b\bar{b})$ in the region of $\Upsilon(5S)$ and $\Upsilon(6S)$ resonances

No significant difference in $\Upsilon(5S)$ parameters between R_b and $R_{\Upsilon\pi\pi}$ $R_{\Upsilon\pi\pi}$ is preferable for measuring masses and widths of $\Upsilon(5S,6S)$

Non-resonant continuum contribution is consistent with zero $\Upsilon(5S)$ and $\Upsilon(6S)$ parameters agree with those measured in $\sigma(e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-)$

6

Anomalies in $\Upsilon(5S) \rightarrow b\overline{b}\pi^+\pi^-$ transitions

Belle: PRL108, 032001 (2012)

Two charged bottomoniumlike resonances, $Z_b(10610)$ and $Z_b(10650)$, were observed in five decay channels, $\Upsilon(nS)\pi^{\pm}$ (n = 1, 2, 3) and $h_b(mP)\pi^{\pm}$ (m = 1, 2)

Study of $\Upsilon(5S) \rightarrow Z_b \pi$

Similar production rates of $Z_b(10610)$ and $Z_b(10650)$ in five decay channels

Amplitude analysis of $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$

108 🖵

0.2

0.4

 $M^{2}(\pi^{+}\pi^{-})$, GeV^{2}/c^{4}

0.6

0.8

Spin-parity of Zb(10610) and Zb(10650) is 1^+ . All other J^P<3 are excluded.

Evidence of $\Upsilon(6S) \rightarrow Z_b[\rightarrow h_b \pi]\pi$

 $M_{miss}(\pi^+\pi^-)$ was fitted in bins of $M_{miss}(\pi)$

With present statistics we cannot conclude if both $Z_b(10610)$ and $Z_b(10650)$ states are produced at $\Upsilon(6S)$, or only one of them.

Heavy quark spin structure in Z_b

A.B., A.Garmash, A.Milstein, R.Mizuk, M.Voloshin PRD84 054010 (arXiv:1105.4473)

Wave function at large distance – molecule B(*)B*:

$$Z_{b}' \rangle = \frac{1}{\sqrt{2}} \mathbf{O}_{bb} \otimes \mathbf{I}_{Qq} - \frac{1}{\sqrt{2}} \mathbf{I}_{bb} \otimes \mathbf{O}_{Qq}$$

$$\left|Z_{b}\right\rangle = \frac{1}{\sqrt{2}} \overline{\mathbf{O}_{bb}} \otimes \overline{\mathbf{I}_{Qq}} + \frac{1}{\sqrt{2}} \overline{\mathbf{I}_{bb}} \otimes \overline{\mathbf{O}_{Qq}}$$

Explains:

B*

B*

- Why $h_b\pi\pi$ is unsuppressed relative to $\Upsilon\pi\pi$
- Relative phase ~0 for Υ and ~180^0 for h_b
- Production rates of $Z_b(10610)$ and $Z_b(10650)$ are similar
- Widths of $Z_b(10610)$ and $Z_b(10650)$ are similar
- Dominant decays to B(*)B*

Other Possible Explanations

- Coupled channel resonances (I.V.Danilkin et al, arXiv:1106.1552)
- Cusp (D.Bugg Europhys.Lett.96 (2011),arXiv:1105.5492)
- Tetraquark
 (M.Karliner, H.Lipkin, arXiv:0802.0649)

Study of $e^+e^- \rightarrow B^{(*)}\overline{B}^{(*)}\pi$ at $\Upsilon(5S)$

Masses of the observed Z_b resonances are close to the BB* and B*B* thresholds, respectively: branching fractions $Z_b \rightarrow B(*)B^*$ might be large (dominant).

Analysis strategy:

Study of $e^+e^- \rightarrow B^{(*)}B^{(*)}\pi$ at $\Upsilon(5S)$

350

200

150

MeV/c 200 250

(a)

RS data

M(B) sidebands

Data:

Analysis strategy:

Combine a B candidate with a charged pion from the rest of the event \rightarrow calculate recoil mass against the $B\pi$ system

Study of $e^+e^- \rightarrow B^{(*)}\overline{B}^{(*)}\pi$ at $\Upsilon(5S)$

Analysis strategy Tor events from 3-body sig. region \rightarrow recoil mass against primary π^{\perp}

BB* π and B*B* π data fits well to just Z_b(10610) and Z_b(10650) signal,

Channel	Fraction, $\%$		Assuming Z _h decays are	ۯ
	$Z_{b}(10610)$	$Z_b(10650)$	saturated by already	
$\Upsilon(1S)\pi^+$	$0.60 \pm 0.06 \pm 0.16$	$0.17 \pm 0.02 \pm 0.06$		ſ
$\Upsilon(2S)\pi^+$	$4.05 \pm 0.40 \pm 0.79$	$1.38 \pm 0.16 \pm 0.43$	observed channels	
$\Upsilon(3S)\pi^+$	$2.40 \pm 0.24 \pm 0.55$	$1.62 \pm 0.19 \pm 0.47$		
$h_b(1P)\pi^+$	$4.26 \pm 0.54 \pm 1.17$	$9.23 \pm 1.48 \pm 2.82$	B ^(*) B* channels	
$h_b(2P)\pi^+$	$6.08 \pm 0.65 \pm 2.22$	$17.0 \pm 2.4 \pm 4.6$	deminate the 7 decays	
$B^+\bar{B}^{*0} + \bar{B}^0B^{*+}$	$82.6 \pm 12.6 \pm 11.9$		dominate the Z _b decays	
$B^{*+}\bar{B}^{*0}$		$70.6 \pm 14.3 \pm 10.9$		
				16

Summary on $Z_b(10610)$ and $Z_b(10650)$

- Z_b are very close to $B\overline{B^*}$ and $B^*\overline{B^*}$ thresholds
- Their quantum numbers are: $I^G, J^{PC} = 1^+, 1^{+(-)}$
- They are observed both in the hidden-bottom modes $(\Upsilon(1S/2S/3S)\pi)$ and $h_b(1P/2P)\pi$ and in the open-bottom modes $(B\overline{B^*}, B^*\overline{B^*})$ at $\Upsilon(5S)$ resonance
- We found an evidence of $Z_b(10610)$ and $Z_b(10650)$ states in decays $\Upsilon(6S) \rightarrow Z_b[\rightarrow h_b(1P/2P)\pi]\pi$
- $B\overline{B^*}/B^*\overline{B^*}$ modes dominate in Z_b decays with the branching ratios 83%/71%
- Energy behaviour of $\sigma(e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-)$ and $\sigma(e^+e^- \rightarrow h_b(nP)\pi^+\pi^-)$ are similar
- Z_b properties agree well with $B^{(*)}\overline{B^*}$ molecular structure

Search for New Physics in $B \rightarrow D^{(*)} \tau v$

Process with third generation quarks and leptons In models with charged Higgs bosons their couplings are proportional to lepton mass, hence NP effects are enhanced for τ

New physics could change:

- Branching fraction
- Tau polarization
- Effect could be different for
 D and D*

Confirm BaBar result: PRL 109 101802 (2012), PRD 88 072012 (2013)

Experimental challenge: 2 (hadronic τ decay) or 3 (leptonic τ decay) undetected neutrinos

$$R = \frac{\mathcal{B}(\bar{B} \to D\tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D\ell^- \bar{\nu}_{\ell})} \qquad R^* = \frac{\mathcal{B}(\bar{B} \to D^* \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^* \ell^- \bar{\nu}_{\ell})} \qquad \ell^- = e^- \text{ or } \mu^-$$

Search for New Physics in $B \rightarrow D^{(*)} \tau v$

arXiv: 1507.03233

Statistics: 772×10^6 BB pairs **Selections:**

 B_{tag} is reconstructed using hadronic full reconstruction algorithm, which includes 1149 B final states (rec. efficiency 0.3% for B⁺ and 0.2% for B⁰). Additional requirements on the purity of B_{tag} sample preserves ≈85% of signal B→D^(*)τν decays

 τ is reconstructed in the leptonic decays $\tau \rightarrow evv$, μvv , so the signal and normalization modes have the same final particles \rightarrow reduces systematic uncertainty of $R^{(*)}$

In the events with B_{tag} we select $D^{(*)}\ell$ ($D^+\ell^-$, $D^0\ell^-$, $D^{*+}\ell^-$, $D^{*0}\ell^-$), $\ell = e$ or μ among remaining tracks and clusters:

$$\begin{split} D^+ &\to K^{\text{-}} \pi^+ \pi^+, \ K^0{}_S \pi^+, \ K^0{}_S \pi^+ \pi^0, \ K^0{}_S \pi^+ \pi^+ \pi^-; & D^{*+} \to D^0 \pi^+, \ D^+ \pi^0; \\ D^0 &\to K^{\text{-}} \pi^+, \ K^{\text{-}} \pi^+ \pi^-, \ K^{\text{-}} \pi^+ \pi^0, \ K^0{}_S \pi^0, \ K^0{}_S \pi^+ \pi^-; & D^{*0} \to D^0 \pi^0, \ D^0 \gamma; \\ (-0.2 &< M^2{}_{miss} < 8.0) \ GeV^2/c^4 & M^2{}_{miss} = (P_{beam} - P_{B_{tag}} - P_{D}(^*) - P_{\ell})^2/c^2; \\ q^2 &> 4 \ GeV^2/c^4 & q^2 = (P_B - P_{D}(^*))^2; \end{split}$$

Search for New Physics in B \rightarrow **D**^(*) τv M²_{miss} range is split into two regions:

1) $M_{miss}^2 < 0.85 \text{ GeV}^2/c^4$: populated by events of $B \rightarrow D^{(*)}ev$, $D^{(*)}\mu v$

2) $M_{miss}^2 > 0.85 \text{ GeV}^2/c^4$: enriched by $B \rightarrow D^{(*)}\tau v (\tau \rightarrow evv, \mu vv)$ To constrain $B \rightarrow D^{(*)}ev$, $D^{(*)}\mu v$ yields M_{miss}^2 in fitted in the region 1), while neural-network output O_{NB} is fitted in region 2). $O_{NB} = \frac{O_{NB} - O_{min}}{O_{max} - O_{NB}}$

Search for New Physics in $B \rightarrow D^{(*)}\tau v$

The fit was repeated with the PDF generated from 2HDM type II MC with $\tan\beta/M_{H\pm} = 0.5 \text{ c}^2/\text{GeV}$:

 $R(D) = 0.329 \pm 0.060 \pm 0.022;$ $R(D^*) = 0.301 \pm 0.039 \pm 0.015;$ $R(D^*)_{2HDM} = 0.241 \pm 0.007.$

 $R(D)_{2HDM} = 0.590 \pm 0.125;$

Belle result compatible with 2HDM type II model in the region around $\tan\beta/M_{H+} = 0.5 \text{ c}^2/\text{GeV}$

Search for dark photon and dark Higgs boson New Belle: PRL 114, 211801 (2015)

Dark photon **A'** and dark Higgs boson **h'** are introduced in the Dark Sector Models, with kinetic mixing (ϵ) between **A'** and γ_{SM} , and **A'** coupling to **h'** (α_D). One of the promising **A'** and **h'** production channels at e⁺ e⁻ colliders is **Higgs'-strahlung**:

 $e^+ e^- \rightarrow A^{\prime} h^{\prime}$ B. Batell *et al.*, Phys. Rev. D **79**, 115008 (2009)

a) $m_{h'} < m_{A'}: h' \rightarrow A'^*A'^*$

b) $m_{A'} < m_{h'} < 2m_{A'}: h' \rightarrow A'A'^*$

c) $m_{h'} > 2m_{A'}: h' \rightarrow A'A'$

At Belle we searched for $e^+ e^- \rightarrow A' h' [\rightarrow A' A']$, $A' \rightarrow e^+e^-$, $\mu^+\mu^-$, $\pi^+\pi^$ in 10 exclusive final states: $3(e^+e^-)$, $3(\mu^+\mu^-)$, $3(\pi^+\pi^-)$, $2(e^+e^-)(\mu^+\mu^-)$, $2(e^+e)(\pi^+\pi^-)$, $2(\mu^+\mu^-)(e^+e^-)$, $2(\mu^+\mu^-)(\pi^+\pi^-)$, $2(\pi^+\pi^-)(e^+e^-)$, $2(\pi^+\pi^-)(\mu^+\mu^-)$, $(e^+e^-)(\mu^+\mu^-)(\pi^+\pi^-)$ $0.1 \text{ GeV/c}^2 < m_{A'} < 3.5 \text{ GeV/c}^2$ in 3 inclusive final states: $2(e^+e^-)X$, $2(\mu^+\mu^-)X$, $(e^+e^-)(\mu^+\mu^-)X$ $1.1 \text{ GeV/c}^2 < m_{A'} < 3.5 \text{ GeV/c}^2$ $2.2 \text{ GeV/c}^2 < m_{h'} < 10.5 \text{ GeV/c}^2$

Search for dark photon and dark Higgs boson

Data: 977 fb⁻¹

Selections:

- $m_{A'}^1 > m_{A'}^2 > m_{A'}^3$
- analysis in bins of $m_{A'}^1$
- divide m¹_{A'} m³_{A'} into signal and sideband regions
- same-sign events were used to evaluate background in the signal region

Efficiency: (20 ÷ 30)%

$$N_{\rm obs} = \sigma_{\rm Bom} (1+\delta) |1-\Pi|^2 \mathcal{LB}\varepsilon + N_{\rm bkg}$$

Number of observed events

Final state	Events	Final state	Events
$3(e^{-}e^{+})$	1	$2(\mu^+\mu^-)(e^+e^-)$	1
$3(\mu^+\mu^-)$	2	$2(\mu^+\mu^-)(\pi^+\pi^-)$	1
$3(\pi^{+}\pi^{-})$	147	$2(\pi^+\pi^-)(e^+e^-)$	5
$2(e^+e^-)(\mu^+\mu^-)$	7	$2(\pi^+\pi^-)(\mu^+\mu^-)$	6
$2(e^+e^-)(\pi^+\pi^-)$	2	$(e^+e^-)(\mu^+\mu^-)(\pi^+\pi^-)$	7
$2(e^+e^-)X$	572	$(e^+e^-)(\mu^+\mu^-)X$	30
$2(\mu^+\mu^-)X$	20		

Search for dark photon and dark Higgs boson 90%CL upper limits on the product $\alpha_D \times \epsilon^2$

No significant signal is observed

Summary

- Cross sections of the reactions e⁺e⁻→Υ(nS)π⁺π⁻, e⁺e⁻→h_b(nP)π⁺π⁻ and e⁺e⁻→bb have been measured in the region of Y(5S) and Y(6S) resonances. Energy behaviour of the σ(e⁺e⁻→Y(nS)π⁺π⁻) and σ(e⁺e⁻→h_b(nP)π⁺π⁻) is similar. Masses and widths of Y(5S,6S) were measured precisely, they agree with the previous measurements.
- We found an evidence of $\Upsilon(6S) \rightarrow Z_b[\rightarrow h_b \pi] \pi$.
- $B\overline{B^*}/B^*\overline{B^*}$ modes dominate in Z_b decays with the branching ratios 83%/71%, Z_b properties agree well with $B^{(*)}\overline{B^*}$ molecular structure.
- $B \rightarrow D^{(*)}\tau v$ have been studied at Belle , our result on R and R^{*} agrees with both SM expectation and BaBar result. It is also consistent with 2HDM type II model in the region around tan $\beta/M_{H\pm} = 0.5 \text{ c}^2/\text{GeV}$
- No significant signal was found for dark photon and dark Higgs, 90% CL upper limits on the product $\alpha_D \times \epsilon^2$ were obtained.