

Lake Louise Winter Institute 2008 February 18-23

Study of au decays at Belle

Denis Epifanov on behalf of the Belle collaboration

Budker Institute of Nuclear Physics, Novosibirsk

Outline:

- Introduction
- Study of hadronic τ decays:
 - $\tau^{-} \rightarrow K_{S}\pi^{-}\nu_{\tau}$ $\tau^{-} \rightarrow \eta X^{-}\nu_{\tau}$ $\tau^{-} \rightarrow \phi K^{-}\nu_{\tau}$ $\tau^{-} \rightarrow \pi^{-}\pi^{0}\nu_{\tau}$
- Search for lepton-flavor-violating τ decays
- Summary

KEKB B-factory, detector Belle

- $E_{e^-} = 8$ GeV, $E_{e^+} = 3.5$ GeV, beam crossing angle is 0.022 rad.
- Peak luminosity $L = 1.71 \times 10^{34} \ 1/\mathrm{cm}^2/\mathrm{sec}$
- Integrated luminosity $\int Ldt = 766 \ 1/\text{fb}$
- B-factory is also τ -factory ($\sigma_{B\bar{B}} = 1.1$ nb, $\sigma_{\tau\tau} \simeq 0.9$ nb): $N_{\tau\tau} = 704 \times 10^6$

Hadronic au decays

Cabibbo-allowed decays $(\mathcal{B} \sim \cos^2 \theta_c)$ $\mathcal{B}(S=0) = (61.85 \pm 0.10)\% \text{ (PDG)}$

Cabibbo-suppressed decays $(\mathcal{B} \sim \sin^2 \theta_c)$ $\mathcal{B}(S = -1) = (2.95 \pm 0.07)\% \text{ (PDG)}$

$$iM_{\rm fi} \left\{ \begin{array}{l} S=0\\ S=-1 \end{array} \right\} = \frac{{\rm G}_{\rm F}}{\sqrt{2}} \overline{u}_{\nu\tau} \gamma^{\mu} (1-\gamma^5) u_{\tau} \cdot \left\{ \begin{array}{l} \cos\theta_{\rm c} \cdot \langle {\rm hadrons}(q^{\mu}) | \hat{J}_{\mu}^{S=0}(q^2) | 0 \rangle \\ \sin\theta_{\rm c} \cdot \langle {\rm hadrons}(q^{\mu}) | \hat{J}_{\mu}^{S=-1}(q^2) | 0 \rangle \end{array} \right\}, \ q^2 \le M_{\tau}^2$$

- Measurement of branching fractions with highest possible accuracy
- Measurement of low-energy hadronic spectral functions
 - Determination of the decay mechanism (what are intermediate mesons and their contributions)
 - Precise measurement of masses and widths of the intermediate mesons
- Comparison with hadronic formfactors from e^+e^- experiments to check CVC theorem
- Measurement of $\Gamma_{\text{inclusive}}(S = -1)$ to determine V_{us} and s-quark mass

Study of $\tau^- \to K_S \pi^- \nu_\tau$ decay

Statistics: $\int Ldt = 351 \ 1/\text{fb} \rightarrow 323 \times 10^6 \ \tau\tau \text{ events}$ (Phys. Lett. B **654**, 65 (2007))

 $K_S \pi$ mass spectrum

$$\begin{aligned} \frac{d\Gamma}{d\sqrt{s}} &\sim \frac{1}{s} \left(1 - \frac{s}{M_{\tau}^2} \right)^2 \left(1 + 2\frac{s}{M_{\tau}^2} \right) P \left\{ P^2 |F_V|^2 + \frac{3(M_K^2 - M_{\pi}^2)^2}{4s(1 + 2\frac{s}{M_{\tau}^2})} |F_S|^2 \right\} \\ F_V &= \frac{BW_{K^*(892)} + a(K^*(1410)) \cdot BW_{K^*(1410)} + a(K^*(1680)) \cdot BW_{K^*(1680)}}{1 + a(K^*(1410)) + a(K^*(1680))} \\ F_S &= a(K_0^*(800)) \cdot BW_{K_0^*(800)} + a(K_0^*(1430)) \cdot BW_{K_0^*(1430)} \end{aligned}$$

The $K^*(892)$ alone is not sufficient to describe the $K_S \pi$ spectrum $K_0^*(800) + K^*(892) + K^*(1410)/K_0^*(1430)$ models provide the best fits

	K*(89	$(2)^{-}$ mass and width					
	$K^{*-}(892)$ PDG07 $K^{*0}(8)$ $K^{*-}(892)$ PDG07 $K^{*0}(8)$ $K^{*-}(892)$ PDG07 $K^{*0}(8)$ $K^{*-}(892)$ PDG07 $K^{*0}(8)$ $K^{*-}(892)$ PDG07 $K^{*0}(8)$	92) CLEO PH 92) 897.5 907.5 907.5 907.5 907.5 907.5 907.5 907.5 907.5 907.5 907.5 907.5 907.5	PDG07 average $f = f = f = f = f = f = f = f = f = f =$				
M(F	$\Gamma(K^*(892)^-) = (895.47 \pm 0.2)$ $\Gamma(K^*(892)^-) = (46.2 \pm 0.2)$	$20(\text{stat.}) \pm 0.44(\text{syst.}) \pm 0.6(\text{stat.}) \pm 1.0(\text{syst.}) \pm 1.0(\text{syst.})$	$\pm 0.59 (mod.)) MeV/c^2$ = 0.7(mod.)) MeV				
	$M(K^*(892)^-), \text{ MeV}/c^2$	$\Gamma(K^*(892)^-), \text{ MeV}$	Comments				
ALEPH	895 ± 2	55 ± 8	$K^{-}\pi^{0}$, syst. errors not est.				
CLEO	896.4 ± 0.9		$K_S \pi^-$, syst. errors not est.				
D. N. Gao and M. L. Yan, "A note on the mass splitting of K*(892)," arXiv:0710.2810 [hep-ph].							

$\tau^- \to K^*(892)^- \eta \nu_\tau$ study

- η signal-band: $(0.50 < M_{\gamma\gamma} < 0.58) \text{ GeV}/c^2$
- Continuum BG is evaluated from side-bands: $(0.43 < M_{\gamma\gamma} < 0.48) \cup (0.60 < M_{\gamma\gamma} < 0.65) \text{ GeV}/c^2$
- K^* -peaking BG is evaluated from MC: $\tau \to K^*(892)\nu \ (2.3 \pm 0.9), \ e^+e^- \to q\bar{q} \ (6.5 \pm 2.3)$
- Fit the data with $K^*(892)$ +BG model $\rightarrow K^*$ yield is (119 ± 19)
- Detection efficiency $\varepsilon_{\text{det}}(K^*\eta\nu) = 0.115\%$

 \mathcal{B} results

Mode	Belle preliminary ${\cal B}$	Previous ${\cal B}$	Experiment
$\tau^- \to K^- \eta \nu_\tau$	$(1.62 \pm 0.05 \pm 0.09) \times 10^{-4}$	$(2.6 \pm 0.5 \pm 0.5) \times 10^{-4}$	CLEO
		$(2.9 \pm 1.3 \pm 0.7) \times 10^{-4}$	ALEPH
$\tau^- \to K^- \pi^0 \eta \nu_\tau$	$(4.7 \pm 1.1 \pm 0.4) \times 10^{-5}$	$(17.7 \pm 5.6 \pm 7.1) \times 10^{-5}$	CLEO
$\tau^- \to \pi^- \pi^0 \eta \nu_\tau$	$(1.39 \pm 0.03 \pm 0.07) \times 10^{-3}$	$(1.7 \pm 0.2 \pm 0.2) \times 10^{-3}$	CLEO
		$(1.8 \pm 0.4 \pm 0.2) \times 10^{-3}$	ALEPH
$\tau^- \to K^{*-} \eta \nu_{\tau}$	$(1.13 \pm 0.19 \pm 0.07) \times 10^{-4}$	$(2.90 \pm 0.80 \pm 0.42) \times 10^{-4}$	CLEO

Hadronic mass spectra in $\tau^- \rightarrow \eta \pi^- \pi^0 \nu_{\tau}$ Nevent/(20 MeV/c²) 009 000 009 000 800 Nevent/(20 MeV/c²) 700 600 500 400 300 300 200 200 100 100 0 0 1.2 0.6 0.8 1.4 0.8 1.2 1.4 0.6 1 1 ${\rm M}^{}_{\pi\eta}$, GeV/c² $M_{\pi^0\eta}$, GeV/c² Nevent/(20 MeV/C²) 009 000 009 000 800 Nevent/(20 MeV/c²) 700 600 500 400 300 300 200 200 100 100 0 0 0.2 0.8 0.8 1.2 1.6 0.6 1.4 1.8 0.4 1 1.2 $M_{\pi\pi^0\eta}$, GeV/c² $\rm M_{\pi\pi^0}$, GeV/c^2 $\mathcal{B}(\tau^- \to \eta \pi^- \pi^0 \nu_\tau) = (1.39 \pm 0.03 \pm 0.07) \cdot 10^{-3}$

is consistent with $\mathcal{B}^{ee} = (1.3 \pm 0.2) \cdot 10^{-3}$ based on e^+e^- data and CVC

Study of $\tau^- \to \phi K^- \nu_{\tau}$ decay

Statistics: $\int Ldt = 401 \ 1/\text{fb} \rightarrow 358 \times 10^6 \ \tau\tau \text{ events}$ (Phys. Lett. B **643**, 5 (2006))

$$\mathbf{e}^{-}$$

$$\mathbf{K} \qquad \mathbf{K} \qquad \mathbf{K$$

0.99

1

1.01

$$=573\pm32$$

1.03 1.04 1.05 M(K,K) GeV/c²

1.02

1.01

0.99

1

 $N_{\phi K \nu}$

 $N_{\phi\pi\nu} = 753 \pm 84$

1.03

1.02

03 1.04 1.05 M(K,K) GeV/c²

 $\mathcal{B}(\tau^- \to \phi K^- \nu_{\tau}) = (4.05 \pm 0.25 \pm 0.26) \times 10^{-5}$

 $M(\phi K)$ spectrum agrees well with $BW(M_R = 1.57 \text{ GeV}/c^2; \Gamma_R = 0.15 \text{ GeV}/c^2)$ and constant matrix element models.

Study of $\tau^- \to \pi^- \pi^0 \nu_\tau$ decay

Statistics: $\int Ldt = 72.2 \ 1/\text{fb} \rightarrow 66.4 \times 10^6 \ \tau\tau \text{ events} \ (arXiv:hep-ex/0512071)$

The best $\pi\pi^0$ mass spectrum fit is achieved with the $\rho(770) + \rho(1450) + \rho(1700)$ model. $\mathcal{B}(\tau^- \to \pi^- \pi^0 \nu_{\tau})$ from all τ -experiments is systematically higher than the CVC prediction (from e^+e^- -experiments): $\mathcal{B}_{\tau} - \mathcal{B}_{ee} = (0.92 \pm 0.21)\%$. The origin of this discrepancy is still unknown.

Search for lepton-flavor-violating au decays

Model	${\cal B}(au o \mu \gamma)$	${\cal B}(au o \ell \ell \ell)$
mSUGRA+seesaw	10^{-7}	10^{-9}
SUSY+SO(10)	10^{-8}	10^{-10}
SM+seesaw	10^{-9}	10^{-10}
Non-universal Z'	10^{-9}	10^{-8}
SUSY+Higgs	10^{-10}	10^{-7}

Analysis strategy:

- Tag one τ by its 1-prong decay $(\mathcal{B}_{1-\text{prong}} \simeq 85\%)$, the other τ is required to produce the LFV final state
- Suppress background from: $\tau \tau$, continuum (u,d,s,c), $B\bar{B}$, two-photon processes, Bhabha, $\mu \mu(\gamma)$
- Blind Analysis. A search for signal events on the (M_{inv} vs. ΔE) plane, M_{inv} ≃ M_τ, ΔE = E_{LFV} − E_{beam} ≃ 0

• $\mathcal{B} < \frac{s_{90}}{2N_{\tau\tau}\varepsilon_{\rm mc}}$

44 different LFV modes are studied at Belle

Search for $\tau^- \to \ell^- \gamma, \ \tau^- \to \ell^- \ell'^- \ell''^+ \ (\ell = e, \mu)$

$ au^-$]	Belle	E	BaBar
mode	$B, 10^{-8}$	$\int Ldt$, fb ⁻¹	$B, 10^{-8}$	$\int Ldt$, fb ⁻¹
$\mu^-\gamma$	4.5	535	6.8	232
$e^-\gamma$	12	535	11	232
$e^-e^-e^+$	3.6	535	4.9	376
$e^-\mu^-\mu^+$	4.1	535	6.6	376
$e^+\mu^-\mu^-$	2.3	535	4.6	376
$\mu^- e^- e^+$	2.7	535	5.0	376
$\mu^-\mu^-\mu^+$	3.2	535	6.7	376
$\mu^+e^-e^-$	2.0	535	2.7	376

Search for $\tau^- \to \ell^- V^0, \, \tau^- \to \ell^- P^0 \, (\ell = e, \mu; \, V^0 = \phi, \omega, \rho^0, K^{*0}, \bar{K}^{*0}; \, P^0 = \pi^0, \eta, \eta')$

$ au^-$]	Belle	BaBar		
mode	$B, 10^{-8}$	$\int L dt$, fb ⁻¹	$B, 10^{-8}$	$\int Ldt$, fb ⁻¹	
$e^{-\pi^0}$	8.0	401	13	339	
$e^-\eta$	9.2	401	16	339	
$e^-\eta'$	16	401	24	339	
$\mu^{-}\pi^{0}$	12	401	11	339	
$\mu^-\eta$	6.5	401	15	339	
$\mu^{-}\eta^{\prime}$	13	401	14	339	

]	Belle	E	BaBar	C	CLEO
mode	$B, 10^{-8}$	$\int Ldt$, fb ⁻¹	$\mathcal{B}, 10^{-8}$	$\int Ldt$, fb ⁻¹	$B, 10^{-8}$	$\int L dt$, fb ⁻¹
$e^{- ho^0}$	6.3	543	—	—	200	4.79
$e^{-}K^{*}(892)^{0}$	7.8	543	—	—	510	4.79
$e^{-}\bar{K}^{*}(892)^{0}$	7.7	543	_	_	740	4.79
$e^-\phi$	7.3	543	—	—	690	4.79
$e^-\omega$	18	543	11	384	—	_
$\mu^{-} ho^{0}$	6.8	543	—	—	630	4.79
$\mu^{-}K^{*}(892)^{0}$	5.9	543	—	—	750	4.79
$\mu^{-}\bar{K}^{*}(892)^{0}$	10	543	—	—	750	4.79
$\mu^-\phi$	13	543	—	—	700	4.79
$\mu^{-}\omega$	8.9	543	10	384	_	—

• Huge statistics recorded by Belle allows us to study hadronic τ decays with high accuracy. The branching fractions of several decay modes:

$$\begin{aligned} \mathcal{B}(\tau^- \to K_S \pi^- \nu_\tau) &= (4.04 \pm 0.02_{\text{stat}} \pm 0.13_{\text{syst}}) \times 10^{-3} \\ \mathcal{B}(\tau^- \to K^- \eta \nu_\tau) &= (1.62 \pm 0.05_{\text{stat}} \pm 0.09_{\text{syst}}) \times 10^{-4} \\ \mathcal{B}(\tau^- \to K^- \pi^0 \eta \nu_\tau) &= (4.7 \pm 1.1_{\text{stat}} \pm 0.4_{\text{syst}}) \times 10^{-5} \\ \mathcal{B}(\tau^- \to \pi^- \pi^0 \eta \nu_\tau) &= (1.39 \pm 0.03_{\text{stat}} \pm 0.07_{\text{syst}}) \times 10^{-3} \\ \mathcal{B}(\tau^- \to K^{*-} \eta \nu_\tau) &= (1.13 \pm 0.19_{\text{stat}} \pm 0.07_{\text{syst}}) \times 10^{-4} \\ \mathcal{B}(\tau^- \to \phi K^- \nu_\tau) &= (4.05 \pm 0.25_{\text{stat}} \pm 0.26_{\text{syst}}) \times 10^{-5} \end{aligned}$$

have better accuracy then the previous measurements. The $\mathcal{B}(\tau^- \to \phi K^- \nu_{\tau})$ was measured for the first time.

• We studied the $K_S \pi$ mass spectrum in the $\tau \to K_S \pi \nu$ sample. The $K^*(892)$ alone is not sufficient to describe the $K_S \pi$ invariant mass spectrum. The best description is achieved in the $K_0^*(800) + K^*(892) + K_0^*(1410)$ and $K_0^*(800) + K^*(892) + K_0^*(1430)$ models.

The values of the $K^*(892)^-$ mass and width we obtained are:

$$M(K^*(892)^-) = (895.47 \pm 0.20_{\text{stat}} \pm 0.44_{\text{syst}} \pm 0.59_{\text{mod}}) \text{ MeV/c}^2$$
$$\Gamma(K^*(892)^-) = (46.2 \pm 0.6_{\text{stat}} \pm 1.0_{\text{syst}} \pm 0.7_{\text{mod}}) \text{ MeV}$$

• In the evaluation of the branching fraction upper limits for the LFV τ decays we are approaching the 10^{-8} level. Parameter space for many models beyond the SM can be restricted.

Backup slides

Study of the $au^- o K_S \pi^- u_ au$ decay

- Measurement of $\tau \to K_S \pi \nu_{\tau}$ branching ratio $\tau \to \overline{K^0} \pi \nu_{\tau}$ has the largest \mathcal{B} among decays with one kaon, so provides the dominant contribution to the s-quark mass sensitive total strange hadronic spectral function.
- $K_S \pi$ mass spectrum (F_V : $K^*(892)$, $K^*(1410)$, $K^*(1680)$; F_S : $K_0^*(800)(\kappa)$, $K_0^*(1430)$)
 - M. Battle *et al.* [CLEO Collaboration], "Measurement of Cabibbo suppressed decays of the tau lepton," Phys. Rev. Lett. **73**, 1079 (1994)
 [arXiv:hep-ph/9403329].
 - P. Lichard, Phys.Rev.D **60**, 093012 (1999) (nonzero value of the slope parameter λ_0 of the $K_{\mu3}^{\pm}$ and $K_{\mu3}^0$ formfactors implies the existence of the $\tau \to K_0^{\star}(1430)\nu_{\tau}$ decay)
 - M. Finkemeier and E. Mirkes, "The scalar contribution to $\tau \to K \pi \nu_{\tau}$ ", Z. Phys. C **72**, 619 (1996) [arXiv:hep-ph/9601275].
- CP violation in $\tau \to K_S \pi \nu_{\tau}$
 - J.Kuhn, E.Mirkes, Phys. Lett. **B398**, 407 (1997)
 - G.Bonvicini et al (CLEO), Phys.Rev.Lett.88, 111803 (2002)
 - I.I.Bigi, A.I.Sanda, Phys. Let. B 625, 47 (2005)
 - G. Calderon, D. Delepine and G. L. Castro, "Is there a paradox in CP asymmetries of $\tau^{\pm} \rightarrow (K_L, K_S) \pi^{\pm} \nu_{\tau}$ decays?" arXiv:hep-ph/0702282.

- $2 \leq N_{tracks} \leq 8$
- $|Q_{total}| \leq 2$
- $\sum_{i=1}^{N_{trk}} |\vec{P_i}|^{CMS} < 10 \text{ GeV/c}$
- $\sum_{i=1}^{N_{clusters}} E_i^{LAB}(ECL) < 10 \text{ GeV}$
- $P_{\perp \ max}^{LAB} > 0,5 \text{ GeV/c}$
- Event vertex |R| < 0, 5 cm, |Z| < 3 cm
- For $N_{trk} = 2$: $-\sum_{i=1}^{N_{trk}} |\vec{P_i}|^{CMS} < 9 \text{ GeV/c}$ $-\sum_{i=1}^{N_{clusters}} E_i^{LAB}(ECL) < 9 \text{ GeV}$ $-5^o < \theta_{missing}^{LAB} < 175^o$
 - $E_{rec} = \sum_{i=1}^{N_{trk}} |\vec{P_i}|^{CMS} + \sum_{j=1}^{N_{\gamma}} |\vec{K_j}|^{CMS} > 3 \text{ GeV/c } \mathbf{OR} \ P_{\perp \ max}^{LAB} > 1,0 \text{ GeV/c}$
 - If $2 \leq N_{trk} \leq 4$:
 - $E_{tot} = E_{rec} + |\sum_{i=1}^{N_{trk}} \vec{P_i}^{CMS} + \sum_{j=1}^{N_{\gamma}} \vec{K_j}^{CMS}| < 9 \text{ GeV/c OR}$ Maximum opening angle< 175°
 - $N_{barrel} \ge 2 \text{ OR } \sum_{All \ clusters} E^{CMS} \sum_{photons} E_{\gamma}^{CMS} < 5,3 \text{ GeV}$
 - Maximum opening angle $> 20^{\circ}$

II. Additional selection criteria

- 2 $\leq N_{\text{tracks}} \leq 4 (P_{\perp}^{\text{CMS}} > 0.1 \text{ GeV/c}, |\Delta r| < 0,5 \text{ cm}, |\Delta z| < 2.5 \text{ cm})$
- $|Q_{total}| \leq 1$
- $N_{\gamma} \leq 5 \ (E_{\gamma}^{CMS} > 0.08 \ \mathrm{GeV})$
- $\sum_{i=1}^{N_{clusters}} E_i^{LAB}(ECL) < 9 \text{ GeV}$

4046048 selected events, detection efficiency $\varepsilon_{det}(e, \mu) = (19.26 \pm 0.01)\%$

The main source of non- $\tau\tau$ background, $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ process, gives about 2% contaminaton. The contribution of the other non- $\tau\tau$ processes is found to be less than 0.1%.

Selection of signal events

- 1 lepton (e/μ) with $\mathcal{P}_e, \mathcal{P}_\mu > 0.8$
- 1 charged pion π with $\mathcal{P}_{K/\pi} < 0.3$
- 1 K_S candidate reconstructed from $K_S \to \pi^+ \pi^-$
 - $-\Delta Z_{1,2} < 1.5 cm$
 - $0.1 < l_{
 ho-\phi}(K_S) < 20cm$
 - $\cos(\vec{P}_{\perp},\vec{r}_{\perp}) \geq 0.95$
 - $-L_{K_S} > 2 \ cm, \ 485 < M_{\pi\pi}(K_S) < 512 \ MeV/c^2 \ (\pm 5\sigma)$

${\cal B}(au^- o K_S \pi^- u_ au) ext{ systematic uncertainty }$

Source	Contribution,%
K_S detection efficiency	2.5
$\tau^+\tau^-$ background subtraction	1.6
$\sum E_{\gamma}^{ m LAB}$	1.0
Lepton identification efficiency	0.8
Pion momentum	0.5
Non- $\tau^+\tau^-$ background subtraction	0.3
$\mathcal{B}(l u_l u_ au)$	0.3
$\frac{\varepsilon(l_1, l_2)}{\varepsilon(l_1, K_S \pi)}$	0.2
K_S momentum	0.2
Pion identification efficiency	0.1
Total	3.3

 $\mathcal{B}(\tau \to K_S \pi \nu_\tau) = (0.404 \pm 0.002_{\text{stat}} \pm 0.013_{\text{syst}})\%$

$K_S\pi$ mass spectrum fit results

	$K^{*}(892)$	$K_0^*(800) + K^*(892) +$	$K_0^*(800) + K^*(892) +$
		$+K^{*}(1410)$	$+K^{*}(1680)$
$M_{K^*(892)^-}, \ { m MeV}/c^2$	895.53 ± 0.19	895.47 ± 0.20	894.88 ± 0.20
$\Gamma_{K^*(892)^-}, {\rm MeV}$	49.29 ± 0.46	46.19 ± 0.57	45.52 ± 0.51
$ \beta $		0.075 ± 0.006	
rg(eta)		1.44 ± 0.15	
$ \mathbf{y} $			0.117 ± 0.017
			0.033
$rg(\chi)$			3.17 ± 0.47
21		1.57 ± 0.23	1.53 ± 0.24
$\chi^2/\text{n.d.f.}$	448.4/87	90.2/84	106.8/84
$P(\chi^2),\%$	0	30	5

	$K_0^*(800) + K^*$	$(892) + K_0^*(1430)$
	solution 1	solution 2
$M_{K^*(892)^-}, \ { m MeV}/c^2$	895.42 ± 0.19	895.50 ± 0.22
$\Gamma_{K^*(892)^-}, \text{ MeV}$	46.14 ± 0.55	46.20 ± 0.69
$ \gamma $	0.954 ± 0.081	1.92 ± 0.20
$rg(\gamma)$	0.62 ± 0.34	4.03 ± 0.09
×	1.27 ± 0.22	2.28 ± 0.47
$\chi^2/{ m n.d.f.}$	86.5/84	95.1/84
$P(\chi^2),\%$	41	19

$\mathcal{B}(\tau^- \to \eta X^- \nu_{\tau})$ systematic uncertainties (%)

Mode	$K^- \eta \nu_{\tau}$	$K^{-}\pi^{0}\eta u_{ au}$	$\pi^{-}\pi^{0}\eta\nu_{\tau}$	$K^- \eta \nu_{\tau}$	$K^{*-}\eta\nu_{\tau}$
η detection	$\eta ightarrow\gamma\gamma$	$\eta ightarrow\gamma\gamma$	$\eta ightarrow\gamma\gamma$	$\eta ightarrow 3\pi$	$\eta ightarrow\gamma\gamma$
Estimation of $K^- \eta \nu_{\tau}$	—	0.6	1.8×10^{-3}	_	—
Estimation of $K^- \pi^0 \eta \nu_{\tau}$	0.3	—	4.2×10^{-2}	0.4	—
Estimation of $\pi^-\pi^0\eta\nu_{\tau}$	7.5×10^{-2}	3.3	—	0.1	—
Estimation of $\pi^-\pi^0\pi^0\eta\nu_{\tau}$	—	—	0.4	—	—
Estimation of $q \bar{q}$	1.5	6.0	0.5	1.5	2.4
Particle ID (K/π)	3.3	2.2	1.0	2.8	2.2
Particle ID (Lepton)	2.3	2.8	2.6	2.6	2.6
Track finding	1.3	1.3	1.3	3.3	1.3
Luminosity measurement	1.6	1.6	1.6	1.6	1.6
π^0 detection	—	2.0	2.0	2.0	2.0
π^0 veto	2.8	2.8	2.8	—	2.8
Signal MC	0.5	1.7	0.7	1.3	1.7
$\mathcal{B}(\eta \to \pi^+ \pi^- \pi^0)$	—	—	—	1.6	—
Total	5.6	8.9	5.0	6.3	6.0

$$\tau^- \rightarrow \ell^- \ell'^- \ell''^+ \ (\ell = e, \mu)$$

Mode	$\varepsilon~(\%)$	$N_{ m BG}$	$\sigma_{ m syst}~(\%)$	$N_{\rm obs}$	s_{90}	$\mathcal{B}(\times 10^{-8})$
$\tau^- \rightarrow e^- e^+ e^-$	6.00	$0.40 {\pm} 0.30$	9.8	0	2.10	3.6
$ au^- ightarrow \mu^- \mu^+ \mu^-$	7.64	$0.07{\pm}0.05$	7.4	0	2.41	3.2
$\tau^- ightarrow e^- \mu^+ \mu^-$	6.08	$0.05{\pm}0.03$	9.5	0	2.44	4.1
$ au^- ightarrow \mu^- e^+ e^-$	9.29	$0.04 {\pm} 0.04$	7.8	0	2.43	2.7
$\tau^- ightarrow e^+ \mu^- \mu^-$	10.8	$0.02{\pm}0.02$	7.6	0	2.44	2.3
$\tau^- \rightarrow \mu^+ e^- e^-$	12.5	$0.01 {\pm} 0.01$	7.7	0	2.46	2.0

$$au^-
ightarrow \ell^- P^0 \ (\ell = e, \mu; \ P^0 = \pi^0, \eta, \eta')$$

mode	μ	$_{\gamma}\eta$	e	η	μ	η'	$e\eta$,′	$\mu\pi^0$	$e\pi^0$
$\eta/\eta'/\pi^0 ightarrow$	3π	$\gamma\gamma$	3π	$\gamma\gamma$	$\pi\pi\eta$	$ ho\gamma$	$\pi\pi\eta$	$ ho\gamma$	$\gamma\gamma$	$\gamma\gamma$
$\epsilon~(\%)$	6.8	6.4	4.7	4.6	4.9	5.4	4.3	4.8	4.5	3.9
$n(\exp)$	0.2	0.4	0.53	0.25	0	0.23	0	0	0.58	0.20
$n(\mathrm{obs})$	0	0	0	0	0	0	0	0	1	0
UL @90% CL	2.2	2.1	2.0	2.2	2.5	2.2	2.5	2.5	3.8	2.2
$Br(\times 10^{-8})$			26	17	41	19	47	25	12	8
combined $Br(\times 10^{-8})$ 6.5		9	.2	1	3	10	3			

$\tau^- \to \ell^- V^0 \ (\ell = e, \mu; \ V^0 = \phi, \omega, \rho^0, K^{*0}, \bar{K}^{*0})$						
Mode	$N_{\rm obs}$	N_{exp}	ϵ	$\Delta \epsilon / \epsilon$	s_{90}	UL on ${\cal B}$
$ au^- ightarrow$			(%)	(%)		(90% CL)
$\mu^-\phi$	1	0.17 ± 0.12	3.14	5.2	4.17	1.3×10^{-7}
$e^-\phi$	0	0.18 ± 0.12	3.10	5.3	2.27	$7.3 imes 10^{-8}$
$\mu^-\omega$	0	0.19 ± 0.20	2.51	6.3	2.22	$8.9 imes 10^{-8}$
$e^-\omega$	1	< 0.24	2.46	6.3	4.34	1.8×10^{-7}
$\mu^- K^{*0}$	0	0.26 ± 0.15	3.71	4.8	2.20	$5.9 imes 10^{-8}$
$e^{-}K^{*0}$	0	0.08 ± 0.08	3.04	4.9	2.35	$7.8 imes 10^{-8}$
$\mu^- \bar{K}^{*0}$	1	0.17 ± 0.12	4.02	4.8	4.14	1.0×10^{-7}
$e^-\bar{K}^{*0}$	0	< 0.17	3.21	4.9	2.45	7.7×10^{-8}
$\mu^- ho^0$	1	1.04 ± 0.28	4.89	4.9	3.34	6.8×10^{-8}
$e^- ho^0$	0	< 0.17	3.94	5.1	2.46	$6.3 imes 10^{-8}$

