Измерение основных характеристик кристалла GAGG

Б. Сикач, Д. Епифанов

ИЯФ СО РАН

7 ноября, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Введение

- В настоящее время в ИЯФ СО РАН и НЦФМ (Саров) развивается проект по созданию Супер Чарм-тау Фабрики (СЧТФ), важной частью детектора СЧТФ является электромагнитный калориметр. В текущем проекте предполагается калориметр на основе быстрых (т = 30 нс) сцинтилляционных кристаллов чистого Csl. Из-за их относительно малого световыхода (2000 ÷ 5000 фот./МэВ) в счётчике калориметра приходится использовать специальные концентраторы сцинилляционного света и полупроводниковые фотодетекторы с усилением (лавинные фотодиоды). Это усложняет конструкцию счётчика калориметра и его электронику.
- Актуальной задачей является поиск других сцинтилляционных кристаллов, имеющих: малую рад. длину (X₀ < 2 см), короткое время высвечивания сц. света (<100 нс), высокий световыход (>15000 фот./МэВ), высокую радстойкость, приемлемую стоимость (<10\$/см³) при массовом производстве (30 – 40 тонн).
- Хорошим кандидатом на использование в современном электромагнитном калориметре является кристалл Gd₃ Al₂ Ga₃ O₁₂ (GAGG). Он обладает подходящими для этой задачи характеристиками: $X_0 = 1.61 \text{ см}$, $R_M = 2.40 \text{ см}$, $\rho = 6.63 \text{ г/см}^3$, $LY = (30 \div 60) \times 10^3 \text{ фот./MэB}$, $\tau = 50 \div 150 \text{ нс}$, пик сц. света при $\lambda = 520 \text{ нм}$, негигроскопичен, обладает высокой радстойкостью. Для калориметра нужны кристаллы GAGG с размерами 4 × 4 × 26 см³ в количестве 10-12 тысяч штук.
- Несмотря на то, что стоимость компонент кристалла GAGG невысокая (опр. в основном стоимостью Gd и Ga), цена кристалла у различных производителей является пока довольно высокой. Также не выращиваются були GAGG с длиной >20 см. Для развития сцинтилляционной калориметрии актуальной задачей является оптимизация выращивания больших кристаллов GAGG, снижение стоимости и освоение возможности массового производства этих кристаллов.
- В данной работе измерены характеристики кристаллика GAGG(Ce) с размерами 17 × 17 × 20 мм³ производства АО "Фомос-Материалы".

Стенд, схема измерения

- Кристаллик, обёрнутый пористым тефлоном, открытой гранью 17 × 17 мм² устанавливался (с оптической смазкой BC-630 или без неё) на фотокатод ФЭУ (Hamamatsu R1847S) в светоизолированном коробе. Он облучался гамма-квантами с энергией E_γ = 662 кэВ от источника Cs¹³⁷.
- Сигнал с ФЭУ обрабатывался оцифровщиком САЕN V1730SB, по порогу записывалась амплитудная осциллограмма сигнала с ФЭУ с временным шагом 2 нс.
- При обработке данных проводилось интегрирование сигнала от его начала в течение 400 нс. (имитация ЗЦП с воротами 400 нс). В качестве амплитуды сигнала с ФЭУ далее рассматривается именно этот интеграл. Он измеряется в единицах (i.u.): 1 i.u. = 0.12 мВ × 2 нс

Калибровка спектрометрического тракта в ф.э.

- Для калибровки спектрометрического тракта в фотоэлектронах (ф.э.) фотокатод ФЭУ освещался слабыми вспышками света (свет от светодиода заводился в короб через оптоволокно), такими, что в каждом импульсе света на фотокатод ФЭУ попадало в среднем около 1 фотона.
- События в оцифровщике записывались по триггеру от источника питания светодиода.
- Одноэлектронный пик в амплитудном распределении хорошо идентифицируется: 1 ф.э. = 117 i.u.

Спектр энерговыделения с оптической смазкой ВС-630

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Спектр энерговыделения без оптической смазки

Energy spectrum of γ (Cs¹³⁷) from the GAGG based counter

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Квантовая эфф. фотокатода ФЭУ

 Спектр сцинтилляционного света GAGG, S(λ), довольно широкий, с максимумом при λ = 520 нм.

- Квантовая эффективность (кв.э.) ФЭУ вычислялась по формуле $\kappa = \int K(\lambda)S(\lambda)d\lambda$, где $K(\lambda)$ спектральная кв.э. ФЭУ, и $\int S(\lambda)d\lambda = 1$.
- $\kappa = 0.12 \pm 0.02$.

Определение световыхода кристалла

- Измеренный световыход счётчика S (в ф.э.) связан со световыходом кристалла Y (в фотонах/МэВ) следующим образом: S = κηYE_γ(МэВ), где:
 - $\kappa = 0.12 \pm 0.02$ квантовая эффективность фотокатода ФЭУ;
 - *η* коэффициент светосбора в счётчике;
 - *E*_γ(M₃B) = 0.662

• Для оценки η и проводились два измерения - со смазкой и без неё. Для небольшого кристаллика околокубической формы используется оценка для коэф. светосбора $\eta = \frac{q\cdot(1-\cos\alpha_c)}{q\cdot(1-\cos\alpha_c)+\mu}$, где: $q = S_{PMT}/S_{tot} = 17\cdot17/(2\cdot17\cdot17+4\cdot17\cdot20) = 0.15$, $\mu << 1$ -коэффициент поглощения света в счётчике на длине $d \sim 20$ мм, $\alpha_c = \arcsin(n_1/n_0)$ - угол полного внутреннего отражения света в кристалле ($n_0 = 1.9$ - показель преломления света в кристалика ($A_1 = 2745 \, \phi$.s.) и без смазки ($A_0 = 2003 \, \phi$.s.) равно отношению коэф. светосбора $z = A_1/A_0 = \eta_1/\eta_0$. Подставив выражения для η получим: $\eta_1 = (1 - zx)/(1 - x)$, $x = \frac{1-\cos\alpha_c 0}{1-\cos\alpha_c 1}$, $\alpha_{c0} = \arccos(\frac{1.9}{1.9})$, $\alpha_{c1} = \arcsin(\frac{1.49}{1.95})$, $\eta_2 = \eta_1/z$.

- $\eta_1 = 0.74$ (со смазкой), $\eta_2 = 0.54$ (без смазки). Нужно отметить, что точность оценки коэф. светосбора невелика (~ 15%). В результате получим световыход кристалла: $Y = \frac{2745}{0.12 \cdot 0.744 \cdot 0.662} = (47000 \pm 9000) фотонов/МэВ.$
- $\mu = 0.019$, коэффициент $\mu = \mu_1 + \mu_2$ включает в себя как эффект поглощения света в самом кристалле (μ_1), так и поглощение света (с вероятностью около 1.5%) при взаимодействии с пористым тефлоном, которым обёрнут кристаллик, (μ_2). Для кристалла прямоугольной формы доля света из α_{c0} -конусов, выходящего из кристалла и отражающегося от тефлона составляет около 2/3, соответственно $\mu_2 = 0.015 \cdot (2/3) = 0.01$. Т.о. поглощение в самом кристалле $\mu_1 = \mu \mu_2 = 0.019 0.01 = 0.009$, соответственно длина поглощения собственного сц. света $\Lambda = d/\mu_1 = 20/0.009 \gtrsim 2$ метров.

Анализ формы импульса (II)

- Записанная форма импульса фитировалась свёрткой суммы двух экспоненциальных распределений (с постоянными времени τ_1 и τ_2), которые моделируют высвечивание в сц. кристалле, и импульсной характеристики спектрометрического тракта, которая моделировалась двумя интегрирующими цепочками с временами T1 и T2. Нужно отметить, что полоса частот тракта (ФЭУ + оцифровщик) велика и составляет ~ 250 МГц, т.е. характерные времена T1 и T2 порядка нескольких наносекунд и д.б. $T1, 2 << \tau_{1,2}$. Т.е. изучаемый спектр сигнала высвечивания лежит глубоко внутри полосы пропускания, вдали от края полосы при высоких частотах. Это позволяет извлечь τ_1 и τ_2 путём фитирования формы импульсов описанной функцией, причём T1 и T2 - тоже свободные параметры фита.
- Аппроксимация формы импульса довольно хорошая. Тем не менее априорное незнание T1, 2 и извлечение их из фита вносит значительную систематическую погрешность в τ_1 и τ_2 . Консервативная оценка систематики заключалась в варьировании T1 и T2 на 50%(!!) их оптимальных значений, при этом τ_1 и τ_2 изменялись на величины вплоть до 30% от их оптимальных значений. Эти отклонения брались в качестве финальных погрешностей τ_1 и τ_2 .

•
$$au_1 = (60 \pm 20)$$
 нс (с долей ~ 85%), $au_1 = (190 \pm 60)$ нс (с долей ~ 15%).

- Световыход кристалла: $Y = (47000 \pm 9000) \, {
 m фотонов}/{
 m M}$ эВ
- Длина поглощения собственного сц. света: ∧ ≥ 2 метров
- Две компоненты высвечивания с временами: $au_1=(60\pm20)$ нс (с долей $\sim 85\%$), $au_1=(190\pm60)$ нс (с долей $\sim 15\%$).