Измерение основных характеристик кристалла LaBr₃(Ce)

Д. Епифанов, Б. Сикач

ИЯФ СО РАН, лаб. 3-3

15 мая, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Введение

- К настоящему времени в ИЯФ СО РАН разработан источник нейтронов для бор-нейтронзахватной терапии (БНЗТ) рака. Ведутся работы по развитию методики облучения опухоли нейтронами и контроля поглощённой дозы в тканях пациента.
- В реакции захвата нейтрона ядром ¹⁰ B, содержащимся в доставленном в опухоль фармпрепарате, образуется на время порядка пикосекунды возбуждённый изотоп ¹¹ B*, который затем распадается на возбуждённый изотоп лития ⁷Li* (*T*_{Li} = 0.84 MэB) и α-частицу (*T*_α = 1.47 MэB). Время жизни ⁷Li* составляет около 0.1 пикосекунды, после снятия возбуждёния рождается стабильный изотоп ⁷Li и γ-квант с энергией *E*_γ = 477.6 кзВ. Доплеровское уширение гамма линии прямоугольной формы составляет ±*E*_γ √(²*T*_{Li})/(³*T*_{Li}) = ±7.6 кзВ (т.е. энергия излучённого γ-кванта в системе покоя ¹¹ B* равномерно распределена от 470 кзВ до 495.2 кзВ).
- Таким образом наличие γ-кванта с энергией E_γ = 477.6 кзВ является маркером бор-нейтронзахватной реакции. Помимо сигнальных γ-квантов с характерной энергией E_γ = 477.6 кзВ в БНЗТ будут генерироваться фоновые γ-кванты с энергией E_{γbkg} = 511.0 кзВ. Ожидаемая скорость счёта фоновых γ-квантов приблизительно на два порядка превосходит скорость счёта сигнальных γ-квантов.
- Для мониторирования процесса БНЗТ и оценки поглощённой дозы в опухоли пациента требуется измерять скорость счёта именно сигнальных γ-квантов. Т.е. счётчик γ-квантов должен существенно различать фоновые (*E*_γ *bkg* = 511.0 кзВ) и сигнальные (*E*_γ = 477.6 кзВ) γ-квантов. Учитывая различие энергий γ-квантов Δ*E* = 511 477.6 ≈ 33 кзВ и требуемый высокий уровень разделения γ-квантов (5 6)σ, получается, что энергетическое разрешение счётчика σ_E/*E* для энергий γ-квантов около 500 кзВ должно быть ≤, 1%.
- Компактные счётчики γ-квантов на основе неорганических сцинтилляционных кристаллов позволяют достичь приемлемой эффективности регистрации γ-квантов (с энергиями от сотен кэВ до нескольких МэВ) и довольно высокого энергетического разрешения. Рекордное энергетическое разрешение достигается в кристаллах с высоким световыходом (LY > 50000 фот./МэВ), а также низким остаточным собственным разрешением (которое определяется зависимостью световыхода кристалла от энерговыделения при низких энергиях ≤ (10 ÷ 50) кэВ). Одним из чемпионов по достижимому энергетическому разрешению является кристалл LaBr3(Ce). LaBr3(Ce) является перспективным кандидатом для его использования в системе мониторирования процесса БНЗТ.
- В данной работе измерены характеристики кристаллика LaBr₃(Ce) в форме прямоугольного параллелепипеда с размерами 16 × 16 × 20 мм³ производства OST_Photonics.

Кристалл LaBr₃(Ce)

Рентгенограмма: слева - фронтальная, справа - боковая (окном вниз)

Схема стенда

- Кристаллик, заключённый производителем в специальный изолированный от внешней атмосферы контейнер, открытой (для прохождения сцинтилляционного света) гранью $16 \times 16 \text{ мм}^2$ устанавливался (с оптической смазкой ВС-630 или без неё) на фотокатод ФЭУ (Натматаtsu R1847S) в светоизолированном коробе. Он облучался γ -квантами с энергией $E_{\gamma} = 662 \text{ кэВ от источника Cs}^{137}$.
- Сигнал с ФЭУ (U_{PMT} = 1100 В) обрабатывался оцифровщиком CAEN V1730SB, по порогу записывалась амплитудная осциллограмма сигнала с ФЭУ с временным шагом 2 нс.
- При обработке данных проводилось интегрирование сигнала в течение 200 нс. (имитация ЗЦП с воротами 200 нс). В качестве амплитуды сигнала с ФЭУ далее рассматривается именно этот интеграл.

Он измеряется в единицах (i.u.): 1 i.u. = 0.12 мВ \times 2 нс

Калибровка спектрометрического тракта

- Для калибровки спектрометрического тракта в фотоэлектронах (ф.э.) фотокатод ФЭУ освещался слабыми вспышками света (свет от светодиода заводился в короб через оптоволокно), такими, что в каждом импульсе света на фотокатод ФЭУ попадало в среднем около 1 фотона.
- События в оцифровщике записывались по триггеру от источника питания светодиода.
- Одноэлектронный пик в амплитудном распределении хорошо идентифицируется. Для напряжения на ФЭУ $U_{\rm PMT}=1300\,$ В чувствительность спектрометрического тракта: 1 ф.э. = (58.7 \pm 0.3) i.u. Пересчёт чувствительности тракта для $U_{\rm PMT}=1100\,$ В даёт: 1 ф.э. = (24.0 \pm 0.1) i.u.

Спектр энерговыделения без оптической смазки

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Квантовая эфф. фотокатода ФЭУ

- Спектр сцинтилляционного света LaBr₃(Ce), S(λ), довольно широкий, с медианой при λ = 380 нм.
- Квантовая эффективность (кв.эфф.) ФЭУ вычислялась по формуле $\kappa = \int K(\lambda)S(\lambda)d\lambda$, где $K(\lambda)$ спектральная кв.эфф. ФЭУ, и $\int S(\lambda)d\lambda = 1$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

• $\kappa = 0.27 \pm 0.03$.

Определение световыхода кристалла LaBr₃(Ce)

- Измеренный световыход счётчика S (в ф.э.) связан со световыходом кристалла LY (в фотонах/МэВ) следующим образом: S = κ · η · LY · E_γ(MэB), где:
 - $\kappa = 0.27 \pm 0.03$ квантовая эффективность фотокатода ФЭУ;
 - *η* коэффициент светосбора в счётчике;
 - *E*_γ(M₃B) = 0.662
- Для оценки η и проводились два измерения с оптической смазкой и без неё. Для небольшого кристаллика околокубической формы используется оценка для коэф. светосбора $\eta = \frac{q\cdot(1-\cos\alpha_c)+\mu}{q\cdot(1-\cos\alpha_c)+\mu}$, где: $q = S_{PMT}/S_{tot} = 16\cdot16/(2\cdot16\cdot16+4\cdot16\cdot20) = 1/7$, $\mu <<1$ -коэффициент поглощения света в счётчике на длине $d \sim 20$ мм, $\alpha_c = \arcsin(n_1/n_0)$ угол полного внутреннего отражения света в кристалле ($n_0 = 1.9$ показатель преломления света в кристалле, $n_1 = 1/1.465$ для воздуха/смазки). Отношение апмлитуд фотопиков со смазкой ($A_1 = 9240 \, ф.э.$) и без смазки ($A_0 = 5510 \, ф.э.$) равно отношению коэф. светосбора $z = A_1/A_0 = \eta_1/\eta_0$. Подставив выражения для $\eta_{0,1}$, разрешив уравнение отн. μ , а потом подставив это выражение в формулу для η получим: $\eta_1 = (1 zx)/(1 x)$, $x = \frac{1-\cos\alpha_c 0}{1-\cos\alpha_{c1}}$, $\alpha_{c0} = \arcsin(\frac{1.46}{1.9})$, $\alpha_{c1} = \arcsin(\frac{1.46}{1.9})$, $\eta_0 = \eta_1/z$.
- $\eta_1 = 0.53$ (со смазкой), $\eta_2 = 0.31$ (без смазки), $\mu = 0.047$. Нужно отметить, что точность оценки коэф. светосбора невелика ($\simeq 15\%$). В результате получим световыход кристалла: $LY = \frac{9240}{0.27 \cdot 0.53 \cdot 0.662} = (97000 \pm 18000) фотонов/МэВ.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The digitized pulse shape from the LaBr, based counter

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Анализ формы импульса (II)

- Записанная форма импульса фитировалась свёрткой суммы двух экспоненциальных распределений (с постоянными времени τ_1 и τ_2), которые моделируют высвечивание в кристалле LaBr₃(Ce), и импульсной характеристики спектрометрического тракта, которая моделировалась интегрирующей цепочкой с временем T1. Нужно отметить, что полоса частот тракта (ФЭУ + оцифровщик) велика и составляет ~ 250 МГц, т.е. характерное время T1 порядка нескольких наносекунд и д.б. T1 << $\tau_{1,2}$. Т.е. изучаемый спектр сигнала высвечивания лежит глубоко внутри полосы пропускания, вдали от края полосы при высоких частотах. Это позволяет извлечь τ_1 и τ_2 путём фитирования формы импульсов описанной функцией, причём T1 - тоже свободный параметр фита.
- Аппроксимация формы импульса довольно хорошая. Тем не менее априорное незнание T1 и извлечение его из фита вносит значительную систематическую погрешность в τ_1 и τ_2 . Оценка систематики заключалась в варьировании T1 на $\pm 20\%$ от его оптимального значения, при этом τ_1/τ_2 изменялись на величины вплоть до 15%/25% от их оптимальных значений. Эти отклонения и брались в качестве финальных погрешностей τ_1 и τ_2 .

•
$$au_1=(26\pm4)$$
 нс (с долей $\geq 95\%$), $au_2=(215\pm50)$ нс (с долей $\leq 5\%$).

Обсуждение и заключение (I)

- \bullet Световыход кристалла: LY = (97000 \pm 18000) фотонов/МэВ
- Две компоненты высвечивания с временами: $au_1=(26\pm4)\,$ нс (с долей $\geq 95\%$), $au_2=(215\pm50)\,$ нс (с долей $\leq 5\%$).
- Измеренное энергетическое разрешение счётчика на основе кристалла LaBr₃(Ce): 2.9%@662 кэВ (*σ_E/E* = 1.2%@662 кэВ).
- Следует отметить, что измеренное энергетическое разрешение счётчика на основе кристалла LaBr₃(Ce), 2.9%@662 кэВ (σ_E/E = 1.2%@662 кэВ), хуже, чем паспортное разрешение от производителя: 2.6%@662 кэВ (σ_E/E = 1.1%@662 кэВ). Ухудшение разрешения в нашем измерении связано с особенностями интегрирования сигнала с ФЭУ. Дело в том, что сигнал интегрировался внутри временных ворот конечной длины 200 нс, и сам сигнал "плавал" внутри этих ворот в зависимости от амплитуды сигнала. Т.к. не весь сигнал интегрируется (есть большая по времени длинная компонента), то из-за флуктуации временнОго положения сигнала внутри ворот, дополнительно флуктуировал и интеграл. Этот эффект доп. разрешения в нашем случае составлял ~ 1%. Этого эффекта можно избежать при оффлайн-обработке сигнала, когда интегрирование каждого сигнала можно проводить строго от его начала, в результате даже для конечной длины ворот интегрирования для каждого сигнала мы будем брать строго одну и ту же долю полного интегрирования сигнала сигнала сигнала.
- При высоком энергетическом разрешении счётчика на основе LaBr₃(Ce) будет возможно разделить γ-кванты с энергиями 478 кэВ и 511 кэВ. В качестве примера см. линии 276 кэВ и 302 кэВ (разница 26 кэВ и при более низкой энергии γ-квантов) источника Ва-133.

Обсуждение и заключение (II)

Spectrum of the energy deposition from γ (Ba-133) in the LaBr₃ based counter

Spectrum of the energy deposition from $\gamma(Co^{60})$ in the LaBr, based counter

うくぐ

Обсуждение и заключение (III)

 Компания Saint-Gobain разработала кристалл LaBr₃(*Ce* + *Sr*) (т.н. Enhanced Lanthanum Bromide) с улучшенным энергетическим разрешением 2.2%@662 кэВ (*σ_E/E* = 0.94%@662 кэВ). Это достигнуто специальной компенсацией в результате которой уменьшилось остаточное собственное разрешение.

Figure 1. Non-proportionality of Lanthanum Bromide & Enhanced Lanthanum Bromide compared to Nal(TI)

Figure 3. Pulse height spectrum compared between Lanthanum Bromide & Enhanced Lanthanum Bromide

Обсуждение и заключение (IV)

• Было проведено моделирование отклика счётчика на фоновые γ -кванты с энергиями $E_{\gamma b kg} = 511$ кэВ и сигнальные γ -кванты, равномерно распределённые в диапазоне [470, 485.2] кэВ: слева - счётчик на основе LaBr₃(Ce) с измеренным в этой работе разрешением $\sigma_E/E = 1.23\%$ @662 кэВ; посередине - счётчик на основе LaBr₃(Ce) с номинальным разрешением $\sigma_E/E = 1.11\%$ @662 кэВ; справа - счётчик на основе LaBr₃(Ce+Sr) с улучшенным разрешением $\sigma_E/E = 0.94\%$ @662 кэВ.

- Видно, что во всех случаях в счётчике на основе LaBr₃ можно хорошо отделить сигнальные БНЗТ *γ*-кванты от фоновых (даже несмотря на ×100 большее число последних).
- Благодарим за содействие в исследовании В.В.Поросева (лаб. 3-13) и Д. А. Касатова (лаб. 9-21).