Next: F406 Banded Linear
Up: CERNLIB
Previous: F123 Bit Vector
Routine ID: F150
| Author(s): K.S. Kölbig | Library: MATHLIB
|
Submitter: | Submitted: 15.09.1978
|
Language: Fortran | Revised:
|
Subroutine subprogram MXDIPR computes the direct (sometimes
called tensor, or Kronecker) product
of
two matrices A and B. Let
;
; then
with
. C has
rows and
columns. If, in particular, A and B are square
matrices, C is also square.
Structure:
SUBROUTINE subprogram
User Entry Names: MXDIPR
Usage:
CALL MXDIPR(A,B,C,IAD,JBD,IJD,IA,KA,JB,LB)
- A,B
- ( REAL) Matrices A and B.
- C
- ( REAL) On exit, C contains the direct product
.
- IAD
- ( INTEGER) First dimension of A.
- JBD
- ( INTEGER) First dimension of B.
- IJD
- ( INTEGER) First dimension of C.
- IA,KA
- ( INTEGER) Number of rows, columns of A.
- JB,LB
- ( INTEGER) Number of rows, columns of B.
Restrictions:
A, B, C must not overlap.
Error handling:
If IA or KA or JB or LB are equal to zero,
the subprogram acts as do-nothing.
Examples:
DIMENSION A(2,2),B(2,2),C(4,4)
...
CALL MXDIPR(A,B,C,2,2,4,2,2,2,2)
assuming
would set
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
References:
- E.P. Wigner, Group Theory, (Academic Press, New York 1959) 17
- W.I. Smirnow, Lehrgang der höheren Mathematik, Vol. III.1,
(Deutscher Verlag der Wissenschaften, Berlin 1954) 221
F406
Next: F406 Banded Linear
Up: CERNLIB
Previous: F123 Bit Vector
Janne Saarela
Mon Apr 3 15:06:23 METDST 1995