The Midas DAQ System

— Version Refer to New documented features —

A wversatile and compact Data Acquisition System

MIDAS

Stefan Ritt, Pierre-Andre Amaudruz

The Midas DAQ System

Contents

1 New documented features — New documented features.c00uus. 7
2 Introduction — What is Midas, what can you do with #t. 8
2.1 What is Midas? e 8

2.2 What can MIDAS do for you?oiiiiimiiiii it 9

3 Components — General information on the internal structure. 10
4 Quick Start — The Howto for installation, quick test, troubleshooting. ... 16
4.1 UNIX installationooeeoiimi i e e 17

4.2 Windows NT installationc.oiiiiiiiiiiii e 19

4.3 vxWorks installationcoiiiiiii i e 21

44 DOS installationt e 22

4.5 Local connection test...eiiniiiitimiii e e 23

4.6 Remote connection test...oueiiiii e 25

4.7 Defining an Experimentot 25

4.8 Defining a frontend 26

4.9 Defining an Analyzer 27

4.9.1 Creating an Analyzero 27

4.9.2 Debugging an Analyzercocieiiininiii i 29

4.9.3 Byte sWapping . .ccueeinniii e 30

4.94 Writing a FORTRAN Analyzercooveiiiiiiiiniiininnnennn.. 30

4.10 Running an Experiment i 31
4.10.1 Starting/Stopping a Run i 32

4.10.2 Monitoring a Runo 32

4.11 Troubleshootting i 33

412 Crashed Frontend e 33

4.13 Corrupted ODB 34

414 Tape ProblemSttt e e 34

5 Internal features — The main internal components of the system. 35
5.1 Frontend codeo 35

5.1.1 The Equipment structureo, 40

5.1.2 FIXED event constructionc...ocoiiiiiiiiiiiiininnennne.. 44

5.1.3 MIDAS event constructionoieeiiiimiiinnnanennenns 45

5.1.4 YBOS event construction ...l 46

5.1.5 Deferred TranSitionoooiiimiiii it 47

5.1.6 Super Event 49

5.2 ODB SErUCHUTE .ottt ettt e e et et e e 51

5.2.1 ODB /System Treeovvniiuiiiiiiii i 52

5.2.2 ODB /RunlInfo Treeoiuuiiiiiiiaei it 53

5.2.3 ODB /Equipment Treec.o.euteniunenen i, 54

5.2.4 ODB /LOGEET TIeE .o ettet et et 56

5.2.5 ODB /Experiment Treeo, 59

5.2.6 ODB /History Treeocoiiiiiiiiii i, 62

5.2.7 ODB /Alarms Treecooiiiiuiiiiiiiiiii i 62

5.2.8 ODB /Script Treeiiniiiii i 64

5.2.9 ODB /EIOg TI€E ...ttt 64

5.3 Hot Link ..o e e 66

5.4 History Systemcneeonoi e e e 69

This page was generated with the help of DOC++ February 1’ 2002 9

http:/ /www. linuxsupportline.com/~doc-+-+

The Midas DAQ System

@

5.5 Alarm Systemeini e 70
5.6 Slow Control SYSEEIML v vttt ettt 72
5.7 Electronic Logbookcoiiiiii e 74
5.8 Log il et e 74
Utilities — The Midas applications.ciiuiiiiiiiiiiiinrnreenenanns 76
6.1 odbedit task — Online DataBase Editor.c..cooieiiiiiiiiiiiinene.. 7
6.2 mstat task — Midas Status display 79
6.3 analyzer task — online / offline analyzer 80
6.3.1 The MIDAS Analyzerc.coeiiininimiiiii i, 81

6.3.2 Multi Stage COncePteutreie ettt 82

6.3.3 Analyzer parametersiiiii e 83

6.3.4 ODB parameters for Analyzercocoieiiiiiiiiiiiiiaa.. 83

6.3.5 Writing the Codevvinini 87

6.3.5.1 ANAlYZEr.C ..t 87

6.3.5.2 <mOdule.C> . e 88

6.3.6 Online USAGEoinii it e 89

6.3.7 Offline USagecouriii e 91

6.4 mlogger task — Multi channel Data logger and history data collector. 93
6.5 lazylogger task — Multi channel background data copier. 93
6.6 mdump task — Event display utility. i 97
6.7 mevb task — Midas Fvent Builder. i i 99
6.7.1 Function descriptiono 101

6.7.2 ODB/EBuilder Treeooniuiiii i 101

6.7.3 EB Operationcouoiiim ittt e 102

6.7.4 mevb Status/Bugs ... 105

6.7.7 eb_user() — event builder user code for private data filtering. 106

6.8 mspeaker, mlxspeaker tasks — Midas message speech synthesizer. 107
6.9 mcnaf task — CAMAC utility.cooieiiiii e 108
6.10 mhttpd task — Midas Web server.c..iiiiii it 109
6.10.1 SEAIt DAZE - ettt 112

6.10.2 ODB Page - . eit it e 114

6.10.3 Equipment Pageciuiiiii e 116

6.10.4 CNAF DAZE ettt e 117

6.10.5 MeSSAZE DAL -t 117

6.10.6 Elog Page . .iini e 118

6.10.7 Program Page 120

6.10.8 HiStOry Page . .vvuiintiiiti e e 120

6.10.9 CUSEOM PAGE vttt ettt e 121

6.11 elog task — Electronic LogBook utility.o o .. 126
6.12 mbhist task — History data uwtility. 128
6.13 mchart task — ODB data for stripchart utility. 130
6.14 mtape task — Tape utility.cooniii i 133
6.15 dio task — Frontend or mcnaf Direct 10 to CAMAC launcher. 134
6.16 stripchart.tcl — Tecl/Tk history/ODB data stripchart display. 134
6.17 hvedit task — HV or Slow control Windows application editor. 136
New application — List of application examples.cccuian. 139
appendix A: Data formatiiiiiiiiiiiiiii it it 141
8.1 Midas formatoueini i e 141
8.2 YBOS formato e 142
appendix B: Supported hardwareciiiiiiiiiiiiiiiiiiiinaneann. 146

This page was generated with the help of DOC++

February 1, 2002 3

http:/ /www. linuxsupportline.com/~doc-+-+

The Midas DAQ System

9.1 CAMAGQG drivers .ttt e e et 147
9.2 VME driversttt e e e 148
9.3 GPIB driverS . ..cueitt et e e 148
10 appendix C: CAMAC and VME access function call 149
10.1 Midas CAMAC standard functions — ezportable midas CAMAC functions [mc-
St) oo e 149
10.2 ESONE CAMAC standard functions — ezportable esone CAMAC functions [es-
one.h, @S0Me.CJ ... o i 173
10.3 Midas VME standard functions — exportable midas VME functions
[mvmestd.h] ... 184
11 appendix D: Computer Busy Logicccciiiiiiiiiiiiiiiiiiiininnenns. 185
12 appendix E: Midas libraries — Programming information, environment,
TACTOS, FUTICHEOTIS. « ettt e iaeeeeenteeeenneeseenaseeeaneosennnsesennnnenn 187
12.1 Environment variables 188
122 State Codes ..ottt e 188
12.3 Transition Codesouueit it 189
124 Midas Data Typesuuuiniii i e e 189
12.5 Midas bank examples e 190
126 YBOS Bank Types ..ottt e e 190
12.7 YBOS bank examples e 191
12.8 Midas Library — exportable midas functions through inclusion of midas.h 193
12.8.9 cm_set_msg.print() — Set message ..., 199
12.8.10 cm_msg() — Returns MIDAS environment variables. 200
12.8.11 cm_msgl() — Redirect messages to a prive log file. 201
12.8.12 cm_msg register() — Register a message dispatch function. 201
12.8.13 cm_get_environment() — Returns MIDAS environment variables. .. 202
12.8.14 cm_connect_experiment() — Connects to a MIDAS experiment. . 204
12.8.15 cm_disconnect_experiment() — Disconnect from a MIDAS experi- 05
MM i
12.8.16 cm_get_experiment_database() — Get the handle to the ODB 206
12.8.17 cm_register_transition — Registers a callback function for run transi- 06
BUOTIS. ot ettt e
12.8.18 bm_open_buffer() — open an event buffer. 207
12.8.19 bm_close buffer() — close event buffer. 208
12.8.20 bm_set_cache size() — Turns on/off caching for reading and writing to
O DU T, 209
12.8.21 bm_compose_event() — compose the Midas event header. 209
12.8.22 bm.request_event() — event request.iiiiiiiiiiiiiii. 210
12.8.23 bm._delete_request() — delete event request.n... 211
12.8.24 bm._send.event() — send event to buffer. 212
12.8.25 bm_flush_cache() — empty write cache., 213
12.8.26 bm_receive_event() — receive event from buffer. 213
12.8.27 bm_empty_buffers() — empty event buffer., 215
12.8.28 bk_init() — Initialize an event.o oo 215
12.8.29 bk init32() — Initialize an event (> 32KBytes). 216
12.8.30 bk.size() — compute event Size.iiiiiiiiii . 216
12.8.31 bk.create() — Create a bank., 216
12.8.32 bk.close() — Close bank. ...t 217
12.8.33 bk_locate() — loate a bank in event.o, 217
12.8.34 bk_iterate() — Retrieve banks pointer from current event. 218
12.8.35 bk_swap() — Swap the content of an event. 219
12.8.36 db_delete_key() — Delete ODB key.cc.cciiiiiiiiiiniiana... 219
12.8.37 db_find key() — Retrieve key handle from key name. 220
This page was generated with the help of DOC++ February 1’ 2002 4

http:/ /www. linuxsupportline.com/~doc-+-+

The Midas DAQ System

12.8.38 db_set_value() — Sets key data in ODB.c....... 221
12.8.39 db_get_value() — Returns key data from the ODB. 222
12.8.40 db_enum key() — Enumerates keys in a ODB directory. 222
12.8.41 db_get key() — Returns information about an ODB key. 223
12.8.42 db_get-data() — Returns data from a key.ol 224
12.8.43 db_get-data_index() — Get single element of data from an array han- 995
Ale. e
12.8.44 db_set_data() — Sets data of a key. ...l 226
12.8.45 db_set_data_index() — Set indiwvidual values of a key array. 226
12.8.46 db_load() — Loads ODB entries from an ASCII file. 227
12.8.47 db_copy() — Copies part of the ODB into an ASCII string. 227
12.8.48 db_paste() — Pastes values into the ODB from an ASCII string. .. 228
12.8.49 db_save() — Save ODB entries to an ASCII file. 229
12.8.50 db_sprintf() — Convert an ODB entry to a string. 229
12.8.51 db_get_record size() — Get record size. ..., 230
12.8.52 db_get_record() — Copies an ODB sub-tree to a local C structure. . 230
12.8.53 db_set_record() — Copies a local C structure to a ODB sub-tree. ... 231
12.8.54 db_createrecord() — Creates an ODB sub-tree from an ASCII repre-
SEMEALION. oottt e

12.8.55 db_open_record() — Creates a hot-link between an ODB sub-tree and 934

0 O SErUCLUTE. . oo e e
12.8.56 db_close_record() — Close open record. 235

12.8.57 db_send_changed records() — update ODB from local open records. 236

12.9 MIDAS Macros — Message Macros, Acquisition. Exportable MACROs through
midas.h, msystem.h or ybos.h. 238
12.9.1 DAQ Macros — LAM and Event header manipulation 239
12.9.2 Message Macros — Message macros for em_-msg() 241
12.10 ' YBOS library — ezportable ybos functions through inclusion of ybos.h 242
12.10.1 EVID bank — EVID bank description with available macro’s. 242
12.10.2 bk.ist() — fill a string will all the bank names in the event. 244
13 appendix F: Midas build options and consideration 249
14 appendix G: Frequently Asked Questionsccoiiiiiiiiiiiaian, 250
14.1 Why the CAMAC frontend generate a core dump (linux)? 250
14.2 Where does Midas log file resides? il 251
14.3 How do I protected my experiment from being controlled by aliases? 251
14.4 Can I compose my own experimental web page? ool 251
14.5 How do I prevent user to modify ODB values while the run is in progress? ... 252
14.6 Is there a way to invoke my own scripts from the web? 252
14.7 T’'ve seen the ODB prompt displaying the run state, how do you do that? 252
14.8 I’ve setup the alarm on one parameter in ODB but I can’t make it trigger? .. 253
14.9 How do I ... oo e 253

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 5

The Midas DAQ System

Welcome to the world of Midas

Midas is a versatile Data acquisition System for middle range physics experiments.

This document will try to answer most of your questions regarding installation, setup, running,
and development.

Here is a list of highlights:

General description of the Midas system.

Setup and acquisition examples.

Q and A listing.

Library calls reference.

If you think Midas can help you for your projects and you want to get more info on it, feel
free to browse through the following Web sites:

EU, CDN

Enjoy!

This page was generated with the help of DOC++

February 1, 2002 6

http:/ /www. linuxsupportline.com/~doc-+-+

1 New documented features

1

New documented features

New documented features.

Some of the midas features are not yet fully documented or even referenced anywhere in the
documentation. This section will maintain an up-to-date information with a log of the latest
documentation on past and current features. It will also mention the wish list documentation on
current developments.

Current doc revision: 1.8.3-4
Software version: 1.8.3

Latest tarball : 1.8.3-3

Wish list

1.8.3-4 e elog task Added comment to this section.
e mevb task Midas event Builder task. This task provides multiple frontend data gath-
ering/filtering/concatenation mechanism. Code in the cvs
1.8.3-3 e ESONE CAMAC standard functions: esone.c inclusion of cclnk , cculk, ccrgl.
e miniexpt directory: update files for proper build.
e appendix A: Data format: New pictures.
e ODB /Experiment Tree: New key ”Edit run number”.

1.8.3-2 e ODB /Logger Tree Specifing independent Data directory for each logging channel.
e ODB /Logger Tree Optional History directory, ELog directory declaration.
e Midas Library Addition of doc on cm_msgl, db_delete_key , db_send_change_record.
1.8.3-1 e Custom page Custom midas web page. Allow the makeup of personalized midas
web page control with access to any ODB field.
e Start page Addition of Edit on Start description for web start command.
e Midas Library Addition of Midas Library function description (db_xxxx).

e Pre-processor flags List of pre-processor flags for midas tunning (appendix F: Midas
build options and consideration).

This page was generated with the help of DOC++

February 1, 2002 7

http:/ /www. linuxsupportline.com/~doc-+-+

2 Introduction

2
Introduction
What is Midas, what can you do with it.
Names
2.1 What is Midas? ... e 8
2.2 What can MIDAS do for you? 9

... A few words...

Acquiring, collecting and analyzing data is the essence of mankind to satisfy his urge for
understanding natural phenomena by comparing ”real” events to his own symbolic representation.
These fundamental steps paved human evolution and in the world of science they have been the
keys to major steps forward in our understanding of nature. Until the last couple of decade’s
-when ”Silicium” was still underground, the PPP protocol (Paper, Pencil and Patience) was the
basic tool for this ”unique” task. With the development of the ”Central Processing Unit”, data
acquisition using computers wired to dedicated hardware instrumentation became available. This
has allowed scientists to sit back and turn their minds towards finding solutions to problems such
as "How do I analyze all these data?” Since the last decade or so when ”connectivity” appeared
to be a powerful word, the data acquisition system had to adapt itself to that new vocabulary.

Based on this sudden new technology, several successful systems using de-centralization of
information have been developed. But the task is not simple! If the hardware is available, im-
plementing a true distributed intelligence environment for a particular application requires that
each node have full knowledge of the capability of all the other nodes. Complexity rises quickly
and generalization of such systems is tough. Recently more pragmatic approaches emerged from
all this, suggesting that central database information on a system may be more adequate, espe-
cially since processing and networking speed are not a "real” concern these days. MIDAS and its
predecessor HIX may be counted part of the precursor packages in the field.

The old question: "How do we analyze all these data?” still remains and may have been the
driving force behind this evolution :-).

->What is Midas?

2.1

What is Midas?

The Maximum Integrated Data Acquisition System (MIDAS) is a general-purpose system for event
based data acquisition in small and medium scale physics experiments. It has been developed at the
Paul Scherrer Institute (Switzerland) and at TRIUMF (Canada) between 1993 and 2000 (Release
of Version 1.8.0).

Midas is based on a modular networking capability and a central database system. MIDAS
consists of a C library and several applications. They run on many different operating systems
such as UNIX like, Windows NT, VxWorks, VMS and MS-DOS. While the system is already in

This page was generated with the help of DOC++

February 1, 2002 8

http:/ /www. linuxsupportline.com/~doc-+-+

2 Introduction

use in several laboratories, the development continues with addition of new features and tools.
Current development involves RTLinux for either dedicated frontend or composite frontend and
backend system.

For the newest status, check the MIDAS home page:
http://midas.psi.chor http://midas.triumf.ca
->What can MIDAS do for you?

2.2

What can MIDAS do for you?

MIDAS has been designed for small and medium experiments. It can be used in distributed
environments where one or more frontends are connected to the backend via Ethernet. The
frontend might be an embedded system like a VME CPU running VxWorks or a PC running
Windows NT or Linux. Data rates around 1MB/sec through standard Ethernet and 6.1MB/sec
over Fast Ethernet can be achieved.

For small experiments and test setups the front-end program can run on the back-end computer
thus eliminating the need of network transfer, presuming that the back-end computer has direct
access to the hardware. Device drivers for common PC-CAMAC interfaces have been written for
Windows NT and Linux. Drivers for PC-VME interfaces are commercially available for Windows
NT.

For data analysis, users can write a complete analyzer or use the standard MIDAS analyzer
which uses HBOOK routines for histogramming and PAW for histogram display.

The MIDAS package contains also a slow control system which can be used to control high
voltage supplies, temperature control units etc. The slow control system is fully integrated in the
main data acquisition and act as a front-end with particular built-in control mechanism. Slow
control values can be written together with event data to tape.

->Components

This page was generated with the help of DOC++

February 1, 2002 9

http:/ /www. linuxsupportline.com/~doc-+-+

3 Components

3

Components

General information on the internal structure.

->Skip to Quick Start

Midas system is based on a modular scheme that allows scalability and flexibility. Each com-
ponent operation is handled by a sub-set of functions. but all the components are grouped in a
single library (libmidas.a, libmidas.so(UNIX), midas.dll(NT)).

The overall C-code is about 40’000 lines long and makes up over 160 functions (version 1.7.x).
But from a user point of view only a subset of these routines are needed for most operations.

Each Midas component is briefly described below but throughout the documentation more
detailed information will be given regarding each of their capabilities. All these components
are available from the ”off-the-shelf” package. Basic components such as the Buffer manager,
Online Database, Message System, Run Control are by default operationals. The other
needs to be enabled by the user simply by either starting an application or by activating the
components through the Online Database.

e Buffer Manager Data flow and messages passing mechanism.

e Message System Specific Midas messages flow.

¢ Online Database Central information area.

e Frontend Acquisition code.

e Midas Server Remote access server (RPC server).

e Data Logger Data storage.

e Analyzer Data analyzer.

e Run control Data flow control.

e Slow Control system Device monitoring and control.

e History system Event history storage and retrival.

e Alarm system Overall system and user alarm.

e Electronic Logbook Online User Logbook.

Buffer Manager The "buffer manager” consists of a set of library functions for event collection
and distribution. A buffer is a shared memory region in RAM, which can be accessed by sev-
eral processes, called ”clients”. Processes sending events to a buffer are called ”producers”,
processes reading events are called ”consumers”.

A buffer is organized as a FIFO (First-In-First-Out) memory. Consumers can specify which
type of events they want to receive from a buffer. For this purpose each event contains a
MIDAS header with an event ID and other pertinent information.

This page was generated with the help of DOC++

February 1, 2002 10

http:/ /www. linuxsupportline.com/~doc-+-+

3 Components

A4S CONpomsnIs

Remote connection
requires Client server for
share memory access

For Local connection
client access directly
share memory

Data Logge
client

IAnalyzer
client

Analyzer
client

Figure 1: Midas layout.

Buffers can be accessed locally or remotely via the MIDAS server. The data throughput for
a local configuration composed of one producer and two consumers is about 10MB/sec on a
200 MHz Pentium PC running Windows NT. In the case of remote access, the network may
be the essential speed limitation element.

A common problem in DAQ systems is the possible crash of a client, like a user analyzer.
This can cause the whole system to hang up and may require a restart of the DAQ inducing
a lost of time and eventually precious data. In order to address this problem, a special
watchdog scheme has been implemented. Each client attached to the buffer manager signal
its presence periodically by storing a time stamp in the share memory. Every other client
connected to the same buffer manager can then check if the other parties are still alive. If
not, proper action is taken consisting in removing the dead client hooks from the system
leaving the system in a working condition.

Message System Any client can produce status or error messages with a single call using the
MIDAS library. These messages are then forwarded to any other clients who maybe suscep-
tible to receive these messages as well as to a central log file system. The message system
is based on the buffer manager scheme. A dedicated buffer is used to receive and distribute
messages. Predefined message type contained in the Midas library covers most of the message
requirement.

Online Database In a distributed DAQ environment configuration data is usually stored in
several files on different computers. MIDAS uses a different approach. All relevant data for
a particular experiment are stored in a central database called ”Online Database” (ODB).

This page was generated with the help of DOC++

February 1, 2002 11

http:/ /www. linuxsupportline.com/~doc-+-+

3 Components

This database contains run parameters, logging channel information, condition parameters
for front-ends and analyzers and slow control values as well as status and performance data.

The main advantage of this concept is that all programs participating in an experiment
have full access to these data without having to contact different computers. The possible
disadvantage could be the extra load put on the particular host serving the ODB.

The ODB is located completely in shared memory of the back-end computer. The access
function to an element of the ODB has been optimized for speed. Measurement shows
that up to 50,000 accesses per second local connection and around 500 accesses per second
remotely over the MIDAS server can be obtained.

The ODB is hierarchically structured, similar to a file system, with directories and sub-
directories. The data is stored in pairs of a key/data, similar to the Windows NT registry.
Keys can be dynamically created and deleted. The data associated to a key can be of several
type such as: byte, words, double words, float, strings, etc. or arrays of any of those. A key
can also be a directory or a symbolic link (like on Unix).

The Midas library provides a complete set of functions to manage and operate on these
keys. Furthermore any ODB client can register a hot-link between a local C-structure and
a element of the ODB. Whenever a client (program) changes a value in this sub-tree, the
C-structure automatically receives an update of the changed data. Additionally, a client can
register a callback function which will be executed as soon as the hot-link’s update has been
received. For more information see ODB Structure.

Midas Server For remote access to a MIDAS experiment a remote procedure call (RPC) server
is available. It uses an optimized MIDAS RPC scheme for improved access speed. The server
can be started manually or via inetd (UNIX) or as a service under Windows NT. For each
incoming connection it creates a new sub-process which serves this connection over a TCP
link. The Midas server not only serves client connection to a given experiment, but takes the
experiment name, as parameter meaning that only one Midas server is necessary to manage
several experiments on the same node.

Frontend The frontend program refers to a task running on a particular computer which hs
access to hardware equipment. Several frontend can be attached simultaneously to a given
experiment. Each frontend can be composed of multiple Equipment.

e FEquipment is a single or a collection of sub-task(s) meant to collect and regroup logically
or physically data under a single and uniquely identified event.

This program is composed of a general framework, which is experiment independent, and a
set of template routines for the user to be filled. This program will:
e Registers the given Equipment(s) list to the Midas system.

e Provides the mean of collecting the data from the hardware source defined in each
equipment.

Gathers these data in a known format (Fixed, Midas, Ybos) for each equipment.

Sends these data to the buffer manager.

Collects periodically statistic of the acquisition task and send it to the Online Database.

The frontend framework takes care of sending events to the buffer manager and optionally
a copy to the ODB. A "Data cache ” in the frontend and on the server side reduces the
amount of network operations pushing the transfer speed closer to the physical limit of the
network configuration.

The data collection in the frontend framework can be triggered by several mechanisms.
Currently the frontend supports four different kind of event trigger:

This page was generated with the help of DOC++

February 1, 2002 12

http:/ /www. linuxsupportline.com/~doc-+-+

3 Components

e Periodic events Scheduled event based on a fixed time interval. They can be used to
read information such as scaler values, temperatures etc.

e Polled events: Hardware trigger information read continuously which in turn if signal
is asserted will trigger the equipment readout.

o Interrupt events: Generated by particular hardware device supporting interrupt mode.
e LAM events: Generated only when pre-defined LAM is asserted:

o Slow Control events: Special class of events that are used in the slow control system.

Each of these types of trigger can be enabled/activated for a particular experiment state,
Transition State or a combination of any of them. Examples such as ”read scaler event only
when running” or "read periodic event if state is not paused and on all transitions” are
possible.

Dedicated header and library files for hardware access to CAMAC, VME, Fastbus, GPIB
and RS232 are part of Midas distribution set For more information see Frontend code.

Data Logger The data logger is a client usually running on the backend computer (can be
running remotely but performance may suffer) receiving events from the buffer manager and
saving them onto disk, tape or via FTP to a remote computer. It supports several parallels
logging channels with individual event selection criteria. Data can currently be written in
four different formats: MIDAS binary, YBOS binary, ASCII and DUMP (see Midas format,
YBOS format).

Basic functionality of the logger includes:

e Run Control based on:
— event limit
— recorded byte limit
— logging device full.

Logging selection of particular event based on Event Identifier.

Auto restart feature allowing logging of several runs of a given size without user inter-
vention.

Recording of ODB values to a so called History System

Recording of the ODB to all or individual logging channel at the beginning and end of
run state as well as to a separate disk file in a ASCII format.

For more information see ODB /Logger Tree.

Midas Analyzer As in the front-end section, the analyzer provided by Midas is a framework on
which the user can develop his/her own application. This framework is based on HBOOK
histogramming functions from the CERN library which is not included in the MIDAS dis-
tribution. This analyzer takes care of receiving events (a few lines of code are necessary to
receive events from the buffer manager), initializes the HBOOK system and automatically
books N-tuples for all events. It calls user routines for event analysis.

The analyzer is structured into ”stages”, where each stage analyzes a subset of the event
data. Low level stages can perform ADC and TDC calibration, high level stages can calculate
”physics” results. The same analyzer executable can be used to run online (receive events
from the buffer manager) and off-line (read events from file). When running online, generated
N-tuples are stored in a ring-buffer in shared memory. They can by analyzed with PAW
immediately without stopping the run.

When running off-line, the analyzer can read MIDAS binary files, analyze the events, add
calculated data for each event and produce a HBOOK RZ output file which can be read in
by PAW later. The analyzer framework also supports analyzer parameters. It automatically

This page was generated with the help of DOC++

February 1, 2002 13

http:/ /www. linuxsupportline.com/~doc-+-+

3 Components

Run

maps C-structures used in the analyzer to ODB records via Hot link. To control the analyzer,
only the values in the ODB have to be changed which get automatically propagated to the
analyzer parameters. If analysis software has been already developed, Midas provides the
functionality necessary to interface the analyzer code to the Midas data channel. Support
for languages such as C, FORTRAN, PASCAL is available.

Control As mentioned earlier, the Online Database (ODB) contains all the pertinent in-
formation regarding an experiment. For that reason a run control program requires only to
access the ODB. A basic program supplied in the package called ODBEdit provides a simple
and safe mean for interacting with ODB. Through that program essentially all the flexibility
of the ODB is available to the user’s fingertips.

Three "Run State defines the state of Midas Stopped, Paused, Running. In order to
change from one state to another, Midas provides four basic ” Transition” function Tr_Start,
Tr_pause, Tr_resume, Tr_Stop. During these transition periods, any Midas client register to
receive notification of such message will be able to perform its task within the overall run
control of the experiment.

In addition to these main transitions states, the Tr_Start and Tr_Stop have another 2 sub-
states defined as Tr_preStart, Tr_postStart, Tr_preStop, Tr_postStop. These sub-states allows
proper synchronization of data flow through the system.

Running

Fesume Fause

Start Faused Stop

Stopped

Figure 2: Transitions

Slow Control system The Slow control system is a special front-end equipment or program

dedicated to the control of hardware module based on user parameters. It takes advantage
of the Online Database and its ”hot link” capability. Demand and measured values from
slow control system equipment like high voltage power supplies or beam line magnets are
stored directly in the ODB.

To control a device it is then enough to modify the demand values in the database. The
modified value gets automatically propagated to the slow control system, which in turn uses
specific device driver to control the particular hardware. Measured values from the hardware
are periodically send back to the ODB to reflect the current status of the sub-system.

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 14

3 Components

The Slow control system is organized in ”Classes Driver ”. Each Class driver refers to

a particular set of functionality of that class i.e. High-Voltage, Temperature, General I/0,
Magnet etc. The implementation of the device specific hardware is left to the hardware device
driver. The current MIDAS distribution already has some device driver for general I/O and
commercial High Voltage power supply system (see appendix B: Supported hardware. The
necessary code composing the hardware device driver is kept simple by only requiring a ”set
channel value” and ”read channel value”. For the High Voltage class driver, a graphical user
interface under Windows N'T/9x is already available. It can set, load and print high voltages
for any devices of that class. For more information see Slow Control.

History system The MIDAS history system is a recording function imbedded in the Midas
logger. Parallel to its main data logging function of defined channels, the Midas logger can
store slow control data and/or periodic events on disk file. Each history entry consists of
the time stamp at which the event has occurred and the value[s] of the parameter to be
recorded.

The activation of a recording is not controlled by the history function but by the actual
equipment (see Frontend code). This permits a higher flexibility of the history system such
as dynamic modification of the event structure without restarting the Midas logger. At any
given time, data-over-time relation can be queried from the disk file through a Midas utility
mhist task.

The history data extraction from the disk file is done using low level file function giving
similar result as a standard database mechanism but with faster access time. For instance, a
query of a value, which was written once every minute over a period of one week, is performed
in a few seconds. For more information see History System, ODB /History Tree.

Alarm system The Midas alarm mechanism is a built-in feature of the Midas server. It acts upon
the description of the required alarm set defined in the Online Database (ODB). Currently
the internal alarms supports the following mechanism:

ODB value over fixed threshold At regular time interval, a pre-defined ODB value will
be compared to a fixed value.

Midas client control During Run state transition, pre-defined Midas client name will be
checked if currently present.

General C-code alarm setting Alarm C function permitting to issue user defined alarm.
The action triggered by the alarm is left to the user through the mean of running a detached
script. But basic aalrm report is available such as:

e Logging the alarm message to the experiment log file.

e Sending a ”Electronic Log message” (see Electronic logbook).

e Interrupt data acquisition.
For more information see Alarm System, ODB /Alarms Tree.

Electronic logbook The Electronic logbook is a feature which provide to the experimenter an
alternative way of logging his/her own information related to the current experiment. This
electronic logbook may supplement or complement the standard paper logbook and in the
mean time allow ”web publishing” of this information. Indeed the electronic logbook infor-
mation is accessible from any web browser as long as the mhttpd task is running in the
background of the system. For more information see Electronic Logbook, mhttpd task.

->Quick Start

This page was generated with the help of DOC++

February 1, 2002 15

http:/ /www. linuxsupportline.com/~doc-+-+

4 Quick Start

4

Quick Start

The Howto for installation, quick test, troubleshooting.

Names

4.1 UNIX installation 17
4.2 Windows NT installation 19
4.3 vxWorks installationol 21
44 DOS installation 22
4.5 Local connection test... 23
4.6 Remote connection test... 25
4.7 Defining an Experimentol 25
4.8 Defining a frontend it 26
4.9 Defining an Analyzer i, 27
4.10 Running an Experiment 31
4.11 Troubleshootting 33
4.12 Crashed Frontend i 33
4.13 Corrupted ODB ... 34
4.14 Tape problems ... 34

->Skip to Internal features

This section describes step-by-step the installation procedure of the Midas package on several
platform as well as the procedure to run a demo sample experiment. In a second stage, the frontend
or the analyzer can be moved to another computer to test the remote connection capability. Then
finally the frontend and/or the analyzer can be modified to suit a real experiment.

The evaluation demo sample consists of:

1.

2.

A frontend code frontend.c, which doesn’t access any hardware but internally, generates
event structure using a random number generator.

An analyzer program analyzer.c, which receives these events and creates histograms in a
shared memory region, which can be displayed with PAW.

But prior running the demo, the MIDAS software has to be installed. This process is composed
of several steps, which can be summarized as follow:

. Copy of the MIDAS library and header files to system include and library directories.

Build the Midas executable.

Copy (Install) the MIDAS logger and an editor for the online database (ODBEdit) to a
system executable directory.

. Install the Midas server to allow remote connection to the ODB and the to buffer manager.

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 16

4 Quick Start

5. Compile the sample frontend and sample analyzer.
6. Start the frontend and the analyzer on the same node.

7. Start the ODBEdit program to control the experiment.

4.1

UNIX installation

MIDAS version 1.x officially supports the following UNIX systems: Linux, Solaris, FreeBSD,
OSF/1 (DEC UNIX) and Ultrix. Since it’s highly portable, it can probably compiled on other
system with minor adjustments (change of include files location).

New... rpm package is now available
See ftp://midas.triumf.ca/pub/midas

This rpm installation will replaces step 2 through 5 of the following hand installation.

Step 1 : Distribution Obtain the MIDAS distribution set via anonymous ftp from
ftp://midas.psi.ch/pub/midas or ftp://midas.triumf.ca/pub/midas The UNIX ver-
sion is called midas-x.xx.tar.gz where x.xx is the version number. Copy the distribution set
to a directory of your choice. It is recommended to use <home>/midas where <home> is your
home directory. For a public installation it is recommended to use /usr/local/ Then ftp the
Z library which is called libz.a to the same directory.

Step 2 : Extraction Decompress and extract the distribution set by typing:
tar -zxvf midas-x.xx.tar.gz

If the GNU tar is not available the -z flag won’t work. In this case the file has to be
decompressed first and then untared:

gunzip midas-x.xx.tar.gz
tar —-xvf midas-x.xx.tar

The gunzip program can be obtained from any GNU FTP site. For an index have a look
at http://www.gnu.org/order/ftp.html. The extraction process creates a sub-directory
<.../midas-z.zz where x.xx is again the version number. Following sub-directory structure
is then created:

doc Documentation

drivers Hardware drivers

examples Example experiment

include C header files

src Source code

utils Utilities source code

vxworks Makefile for VxWorks

This page was generated with the help of DOC++

February 1, 2002 17

http:/ /www. linuxsupportline.com/~doc-+-+

4 Quick Start

The PAW analyzer, which comes with the MIDAS distribution, can generate compressed
output files. For that purpose it needs the Z library. Extract it from zlib the same way
as the MIDAS distribution. It generates a directory zlib Then go to this directory and
compile the Z library: cd zlib gmake In case of problem refer to the README file in the
zlib directory.

Step 3 : Installation Compile and install the MIDAS system files. In the midas-x.xx directory,
enter gmake If the GNU make program is not available, obtain it from the above-mentioned
source. It is necessary for the automatic detection of the operating system it is running
under. Alternatively, find all ifeq - endif combinations in the makefile and evaluate them
manually since the standard make doesn’t understand these statements. Then enter as the
super-user:

make install

If you don’t have super-user privileges, ask you system administrator to assist you in this
step. The installation will copy the MIDAS library, MIDAS tools and header files into system
directories, usually /usr/local/lib, /usr/local/bin and /usr/local/include. Edit the makefile
if you want to change these directories. Make sure the CERN library is installed properly.
The MIDAS analyzer needs libpacklib.a which is usually installed under /cern/pro/lib.

Step 4 : Compilation Compile the sample experiment. Create a working directory that con-
tains the frontend and analyzer program (in the following example called online). Copy the
sample experiment source files to that directory:

cd ~ (to go to your home directory)
mkdir online

cd online
cp <home>/midas/midas-x.xx/examples/experiment/* .

Edit the makefile in the working directory to select the correct operating system and the
proper directories. Then build the example frontend and analyzer:

make
This creates two files frontend and analyzer. Set the environment variable MIDAS_DIR to

point to the working directory: setenv MIDAS DIR <home>/online This command could be
added to your login shell (.login, .cshrc).

Step 5 : Networking If you plan to run the frontend later on another computer, the MIDAS
server program has to be started. You can either start it manually by entering:

mserver

or via inetd add the following line to your /etc/services file (Superuser required) :

midas 1175/tcp

Then add this single line to your /etc/inetd.conf file :

midas stream tcp nowait root /usr/local/bin/mserver /usr/local/bin/mserver

This assumes that the mserver program is installed at /usr/local/bin/. Send a hang-up
signal to inetd to reload the modified configuration file:

ps -A | grep inetd

This page was generated with the help of DOC++

February 1, 2002 18

http:/ /www. linuxsupportline.com/~doc-+-+

4 Quick Start

<note the process id>

kill -HUP <id>

Each time you make a remote access to this computer, inetd will now start a copy of mserver.

To connect to different experiments, the server has to know in which directories and under
which user names the experiments are running. For this purpose a list of all experiments running
on a machine has to be defined in a file called exptab. This file is located under /etc and contains
one line for each experiment composed of the experiment name, the directory and the user name.
Create this file with an editor containing the following line to define an experiment called ” Sample”:
Sample <home> /online <your name> where Sample is the experiment name, <home> is your home
directory (like /usr/users/john) and <your name> is your login name.

4.2

Windows NT installation

Under Windows NT ...

Step 1 : Distribution Obtain the MIDAS distribution set via anonymous ftp from
ftp://midas.psi.ch/pub/midas The NT version is called midas-x.xx.exe where x.xx is the
version number. Copy the distribution set to a directory of your choice. It is recommended
to use c:\. If you use a different drive than c: substitute the drive letter in the following
instructions by the one that you use. Then ftp the Z library, which is called zlib104.zip to
c:\zlib

Step 2 : Tree Extract the distribution set by executing it:
gunzip midas-x.xx

The extraction process creates a sub-directory \midas-x.xx where x.xx is again the version
number. Following sub-directory structure is then created:

doc Documentation

drivers Hardware drivers

examples Example experiment

include C header files

src Source code

utils Utilities source code

nt Makefiles for Visual C++

nt\lib Libraries for Windows NT

nt\bin Program binaries for Windows NT

nt\directio DirectIO kernel driver for hardware access under Windows NT

nt\service Files needed to install the Midas Server as a NT Service

Step 3 : Extraction Install the MIDAS system files. In the midas-x.xx directory, enter

install

This page was generated with the help of DOC++

February 1, 2002 19

http:/ /www. linuxsupportline.com/~doc-+-+

4 Quick Start

This will install the MIDAS library under c:\midas\nt\lib, the MIDAS programs under
c:\midas\nt\bin and the include files under c:\midas\include. Edit the file install.bat if
you want to change these directories. Set the ”path” environment variable to the MIDAS
executables at c:\midas\nt\bin.

To do so:

e right-click on the ”"My Computer” icon on the desktop.

e Select ”Properties” from the menu.

e On the dialog box, click on the ”Environment” tab.

e Under ”System variables”, search and select ”Path”.

e On the ”value” field, go to the end of the line and add the MIDAS exe-
cutable directory. The current path should be similar to the following line:
%SystemRoot %\ system32;%SystemRoot %;c:\midas\bin.

e Press the ”Set” than the "OK” button.

e Make sure the CERN library is installed properly. The MIDAS analyzer needs pack-
lib.lib that is usually installed under c:\cern\lib.

Step 4 : Compilation Compile the sample experiment. Create a working directory that con-
tains the frontend and analyzer program (in the following example called online). Copy the
sample experiment source files to that directory:

cd c:\
mkdir online
copy c:\midas-x.xx\examples\experiment*.x*

Build the example frontend and analyzer (this assumes that you have installed the command
line tools of Visual C++):

nmake -f makefile.nt

This creates the two files frontend.exe and analyzer.exe. Set the environment variable MI-
DAS_DIR to point to the working directory. Open the ”Environment” dialog box as under
Step 3. Then enter "MIDAS_DIR” in the ”Variable” box and ”c:\online” in the ”Value”
field (without quotation marks). Press the ”Set” and " OK” buttons.

Step 5 : Networking If you plan to run the frontend later on another computer, the MIDAS
server program has to be started. You can either start it manually by entering:

mserver

Or as a Windows NT service, you can configure it by running the install.bat file. Make sure
you have administration privileges on the PC:

c:\midas-x.xx\nt\service\install

To connect to different experiments, the server has to know in which directories and under
which user names the experiments are running. For this purpose a list of all experiments
running on a machine has to be defined in a file called exptab. This file is located under
C:\winnt\system32 and contains one line for each experiment describing the experiment
name and the directory. Create this file with an editor containing the following line:

sample c:\online

This defines the experiment Sample attached to the directory c:\online.

This page was generated with the help of DOC++

February 1, 2002 20

http:/ /www. linuxsupportline.com/~doc-+-+

4 Quick Start

4.3

vxWorks installation

Under VxWorks, only the frontend code is supported by Midas. This means that tools such as
”odbedit”, "mlogger” etc, are not being compiled under VxWorks. Only the code doing the actual
data acquisition (frontend acquisition code, Slow control code) will be generated by the makefile
provided in the package. In the other hand, your host computer should have the capability to
generate code specific for your hardware running VxWorks. Installation of VxWorks has been
done so far only under UNIX like host machine. The cross compiler has to be then available for
the following operations.

Step 1 : Distribution Go to the midas directory tree under vxworks.
cd .../midas-x.xx/vworks

Step 2 : VxWorks Version Pick the proper makefile.xxx which suit your hardware and copy
it to makefile.

Wed> 1s -1

total 20

drwxr-xr-x 4 midas midas 1024 Mar 9 14:45 ./

drwxr-xr-x 12 midas midas 1024 Apr 18 13:34 ../

drwxr-xr-x midas midas 1024 Mar 7 14:53 CVS/

-IWXI-XI-X midas midas 4778 Mar 7 14:53 makefile.68k_psix*

N = = =N

-IWXI-XI-X midas midas 5616 Mar 7 14:53 makefile.68k_trix*
-IWXI-XI-X midas midas 4670 Mar 7 14:53 makefile.ppc_trix
drwxr-xr-x midas midas 1024 Apr 17 09:56 ppcobj/

Wed> cp makefile.ppc_tri Makefile

Step 3 : X-Compiler path Modify the makefile to match your VxWorks installation distribu-
tion. (The example here refers to /vw/include for VxWorks system include files).

Wed> more makefile.ppc_tri

directories

#

System directories

SYSINC_DIR = /vxworks-ppc/include

<edit> makefile SYSINC_DIR =

Step 4 : Building Build the VxWorks Midas library as well as the Midas frontend code skeleton.
This operation should create a ./ppcobj with the generated files (Midas library, drivers, etc)

Wed> make

/vxworks-ppc/bin/ccppc -c -g -finline-functions -Winline -I../include -I/vxworks-ppc/include -ansi
-fstrength-reduce -fkeep-inline-functions -DOS_VXWORKS -DPPCxxx -o ppcobj/midas.o ../src/midas.c
/vxworks-ppc/bin/ccppc -c -g -finline-functions -Winline -I../include -I/vxworks-ppc/include -ansi

-fstrength-reduce -fkeep-inline-functions -DOS_VXWORKS -DPPCxxx -o ppcobj/system.o

../src/system.c

/vxworks-ppc/bin/ccppc -c¢ -g -finline-functions -Winline -I../include -I/vxworks-ppc/include -ansi
-fstrength-reduce -fkeep-inline-functions -DOS_VXWORKS -DPPCxxx -o ppcobj/mrpc.o ../src/mrpc.c

This page was generated with the help of DOC++

February 1, 2002 21

http:/ /www. linuxsupportline.com/~doc-+-+

4 Quick Start

/vxworks-ppc/bin/ccppc -c -g -finline-functions -Winline -I../include -I/vxworks-ppc/include -ansi
-fstrength-reduce -fkeep-inline-functions -DOS_VXWORKS -DPPCxxx -o ppcobj/odb.o ../src/odb.c
/vxworks-ppc/bin/ccppc -¢ -g -finline-functions -Winline -I../include -I/vxworks-ppc/include -ansi
-fstrength-reduce -fkeep-inline-functions -DOS_VXWORKS -DPPCxxx -o ppcobj/ybos.o ../src/ybos.c
rm -f ppcobj/libmidas.o

/vxworks-ppc/bin/1ldppc -o ppcobj/libmidas.o -r ppcobj/midas.o ppcobj/system.o ppcobj/mrpc.o
ppcobj/odb.o ppcobj/ybos.o

/vxworks-ppc/bin/ccppc -g -finline-functions -Winline -I../include -I/vxworks-ppc/include -ansi
-fstrength-reduce -fkeep-inline-functions -DOS_VXWORKS -DPPCxxx -c -o ppcobj/esone.o
../drivers/bus/esone.c

Step 5 : Tree template Go to your application directory and copy the frontend code example
and the corresponding makefile.

cd ~ (to go to your home directory)

mkdir online

cd online

cp .../midas-x.xx/examples/experiment/makefile.vxw makefile
cp .../midas-x.xx/examples/experiment/frontend.c .

Step 6 : Building Modify the makefile to fit your VxWorks configuration and build the frontend
code under VxWorks. This last operation if successful will create a ./ppcobj directory with
a file called mfe.o. This file will have to be loaded into the VxWorks machine through any
mean provided by the VxWorks system.

<edit> Makefile
gmake UFE=frontend

Step 7 : Running If the VxWorks kernel has been built with NFS support, through a telnet
session or through the console, the frontend code can be started in the following way:

cd "<nfs pointing to .../midas-x-xx/vxworks/ppcobj>"
> 1d < libmidas.o

> cd "<nfs pointing to your host online dir>/ppcobj"
> 1d < mfe.o

> mfe ("<Midas_host_name>","<Midas_expt_name>")

Or as a background task:

> taskSpawn "mfe", 121, spTaskOptions, 100000, mfe,"<Midas_host_name>","<Midas_expt_name>"

4.4

DOS installation

The full Midas system can not be installed under MS-DOS due OS resources limitation. But in the
other hand, MS-DOS is suitable to run a single Midas application such as a single client. Usually
this client is of the type of a frontend with hardware data collection capability. In order to connect
this MS-DOS client to the remote Midas system, a TCP/IP stack has to be primarily installed
and running. MIDAS has been tested with PC/TCP from FTPSoftware. Special files needed
for compilation of MIDAS client under MS-DOS are included in the msdos directory. It contains

This page was generated with the help of DOC++

February 1, 2002 22

http:/ /www. linuxsupportline.com/~doc-+-+

4 Quick Start

project files (*.prj) for Turbo C++ and Borland C++. The include directory contains some files
which replace the standard include files (usually under \bc\include). Care has to be taken to
guaranty that the msdos\include directory precedes the \bc\incude directory in the include files
path (usually specified under Options/Directories in Borland C++). Instead of creating a MIDAS
library, client programs contain the files midas.c, system.c, odb.c and mrpc.c directly in their
project files. The PC/TCP library lpctep.lib, which contains the socket routines, has to be linked
to the executable. Only the large memory model is supported. Using the operating system MS-
DOS today may seems old fashioned. But it has to be considered that a MIDAS frontend does
not need a multi-process operating system because it contains its own scheduler. A multi-process
operating system only puts additional load on the computer due to context switching which is not
necessary in that case. One disadvantage of using MS-DOS could be the lack of 32bit support
especially for the floating-point operations, which could be necessary within the frontend code
for event filtering. The main disadvantage of using MS-DOS is the fact that programs cannot be
loaded remotely like under VxWorks. To overcome this problem, the following scheme has been
successfully used. The frontend program is compiled on the back-end PC running Windows NT in
the counting house that runs the freeware NFS server SOSS . The frontend computer (MS-DOS)
mounts the directory that contains the frontend executable program (usually c:\online). It then
starts the frontend in a loop. This can be done in the autoexec.bat file:

<mount back-end c: as drive n:>
n:

cd online

:loop

frontend -h <host name>

goto loop

If the frontend program needs to be modified, it is recompiled on the NT computer, which

replaces frontend.exe. Then the frontend is stopped with the ODBEdit command >sh frontend.
The loop in autoexec.bat restarts then the new frontend is automatically reloaded and started.

4.5

Local connection test...

After successful installation of the Midas package, the necessary steps for running the sample
experiment consists on starting the frontend, the logger and the analyzer in three different windows
from your working directory (called ”online” in the above installation):

Wed>frontend
Wed>analyzer
Wed>mlogger

These three programs will connect to the local online database and buffer manager. In the frontend
window will display a status information (stopped) and statistics about ”trigger events” and ”scaler
events”. The trigger events will be generated as fast as possible (in a real experiment there will
be a hardware trigger) while the scaler event will be generated once every ten second. To control
the experiment, start the run control program (ODBEdit).

odbedit
[local:sample:S]/>

This page was generated with the help of DOC++

February 1, 2002 23

http:/ /www. linuxsupportline.com/~doc-+-+

4 Quick Start

This program allows access to the ODB and is used for run control. Try these commands:

Show all connected clients. Shows the logger, the frontend, the analyzer, the ODBEdit itself.
[local:sample:S]/>Scl

Go to "runinfo” sub-directory.
[local:sample:S]/>cd runinfo

Show runinfo values. Shows undefined run number.

[local:sample:S]/>1s

State 1

Online Mode 1

Run number 4

Transition in progress 0

Requested transition 0

Start time Wed Feb 23 17:50:35 2000
Start time binary 951357035

Stop time Wed Feb 23 17:51:12 2000
Stop time binary 951357072

Change the run number.
[local:sample:S]/>set "run number" 123
Start a run. The frontend window shows run state ”Running” and statistics number changing.

[local:sample:S]/>start

Run number [124]:

Are the above parameters correct? ([yl/n/q):
Starting run #124

Stop run.
[local:sample:S]/>stop
[local:sample:R]/Runinfo>stop
13:05:16 [ODBEdit] Run #124 stopped

Show available commands.

[local:sample:S]/>help
Database commands ([] are options, <> are placeholders):

alarm - reset all alarms

cd <dir> - change current directory

chat - enter chat mode

chmod <mode> <key> - change access mode of a key
l=read | 2=write | 4=delete

cleanup - delete hanging clients

copy <src> <dest> - copy a subtree to a new location

create <type> <key> - create a key of a certain type

create <type> <key>[n] - create an array of size [n]

This page was generated with the help of DOC++

February 1, 2002 24

http:/ /www. linuxsupportline.com/~doc-+-+

4 Quick Start

Note that ODBEdit supports ”UNIX tcsh” command line editing. Use the tabulator to complete
a directory name and the arrow keys to recall previous commands.

4.6

Remote connection test...

So far the demo sample experiment has demonstrate the basic operation of the Midas system in
a local environment (see Local connection). Before switching to a ”real” experiment with remote
frontend, a secondary demo test can be done to verify the remote capability of Midas and to get
you familiarize with it.

Move the frontend program (frontend.c) to another computer connected through network to
the back-end (analyzer) computer. This can be a VME CPU, a PC running Linux or Windows NT.
Or Cross-compile the frontend program (frontend.c) and move the image to the remote computer if
running the VxWorks or MS-DOS. Start the Midas server by hand (back-end computer) if configu-
ration through the inetd has not been used (valid only for UNIX machine). <system_dir>/mserver&
On the frontend computer, start the frontend task specifying the host name (back-end computer)
as well as the experiment name using the -h and -e flags. The experiment name has to be specified
only if more than one experiment is defined in the exptab file on the back-end computer. frontend
-h <host-name> [-e Sample]

Running ODBEdit on either computer will allow you to control the run by issuing command
as described earlier (start, stop, etc.) After successfully passing this remote test, the next step
would be the setup of a hardware trigger. Refer to appendix D: Computer Busy Logic to learn
how to setup a ”computer busy” logic. A hardware trigger signal has to be made available to the
frontend computer through an I/O unit or through an interrupt signal (in CAMAC also called
look-at-me signal or LAM) in order to activate the proper software sequence for data collection.
Since the frontend framework is hardware independent, all hardware accesses have to be done in
the user part of the frontend. It is recommended to use first the polling mode. For that purpose
code has to be inserted in the function poll_trigger_event() for performing constant check for the
presence of the hardware signal. The readout code read_trigger_event() which will be called upon
that later condition, will collect the predefined data. The last instruction in this routine should
be the rearming of the hardware (Clear, reset trigger signal) to enable new event. FNoted that if
the flag RO_ODB is defined in the equipment definition for the trigger event, a copy of the trigger
event is sent to the ODB under /Equipment/Trigger/Variables periodically. The contents of the
event can be checked with ODBEdit. Once the frontend is running correctly, the user analyzer can
be modified to suit the needs of the experiment. This chapter describes the usage of MIDAS in
more detail. It explains how to move from the sample experiment to a ”real” experiment. Details
of the frontend, the logger, the analyzer and the run control are covered.

4.7

Defining an Experiment

Every experiment under Midas has its own ODB. In order to differentiate them, an experiment
name and directory are assigned to each experiment. This allows several experiments to run con-
currently on the same host using a common Midas installation. Whenever a program participating
in an experiment is started, the experiment name can be specified as a command line argument
or as an environment variable. A list of all possible running experiments on a given machine is

This page was generated with the help of DOC++

February 1, 2002 25

http:/ /www. linuxsupportline.com/~doc-+-+

4 Quick Start

kept in the file exptab which is located under /etc (UNIX) or
winnt
system32 (Windows NT).

Different experiments can run under the same user name or under different user names. The
Midas system supports multiple experiment running contemporary on the same computer. Even
though it may not be efficient, this capability makes sense when the experiments are simple
detector lab setups which shared hardware resources for data collection. In order to support this
feature, Midas requires a uniquely identified set of parameter for each experiment that is used to
define the location of the Online Database.

These parameters are: The experiment name and experiment directory

Several means for declaration of those parameters are available: ezptab file for remote access
to this node. Each computer has to have an experiment list stored in a system wide area to
allow remote clients to locate the experiment directory. The file has a unique name exptab and
is composed of two entries per line describing the experiment. Since the exptab file is kept in a
system location, one has to have super-user privileges to modify it. If you don’t have it, ask your
system administrator to add your experiment to the ezptab file for you (/etc/exptab for Unix OS
like).

Sample /usr/users/mydir/online LabTestl /home/alllab/labtl
System environment for global setting within a user area:

e MIDAS_DIR points to the directory where the experiment ODB resides. This is used only
for local connection i.e. from within the same computer. That directory uniquely defines
the experiment. setenv MIDAS _DIR <my dir>

o MIDAS_SERVER_HOST defines the name of the host containing the experiment database.
This environment variable sets the default Midas host name for the remote connection.
setenv MIDAS_SERVER_HOST myhost

o MIDAS_EXPT_NAME defines the default name of the experiment to connect to. setenv
MIDAS_EXPT NAME sample

o Application argument Every Midas application has two valid arguments to specify the host
and experiment to contact. -h <host name>: supersedes the default system environment
MIDAS_SERVER_HOST if defined. -e <experiment name> : supersedes the default system
environment MIDAS_EXPT_NAME if defined. Odbedit odbedit -e sample odbedit -e sample

-h myhost

4.8

Defining a frontend

The frontend code (the part doing the actual data acquisition form the hardware) is defined in a
C-code file such as: midas-x.xx/examples/experiment/frontend.c This example generates MIDAS
events under two different equipment’s i.e.: Trigger and Scaler. After compilation, the image can
be started by typing: > frontend

This page was generated with the help of DOC++

February 1, 2002 26

http:/ /www. linuxsupportline.com/~doc-+-+

4 Quick Start

4.9

Defining an Analyzer

Names

4.9.1 Creating an Analyzer i,
4.9.2 Debugging an Analyzer oo,
4.9.3 Byte swapping ...
4.94 Writing a FORTRAN Analyzeroooo....

27
29
30
30

Several ways are available to the user for getting an event analyzer set up: Using the standard
MIDAS analyzer together with PAW as described in (???7) Writing a complete new analyzer
from scratch using a template such as the /examples/lowlevel/consume.c. Adapting an existing
analyzer package (FORTRAN, PASCAL, C) and turning it into a MIDAS consumer. In all the
cases, the software approach is always the same and uses the same tools for basic event retrieval.

The following section describes the second option, which is the most complete example.

4.9.1

Creating an Analyzer

Receiving events from MIDAS is relatively simple and consists of three distinct steps:

e Connecting to an experiment
e Requesting events

e Supplying a callback routine which receives these events
The code for these steps can look like this:

1 #include <stdio.h>

2 #include "midas.h"

3

4

5 void process_event (HNDLE hbuf, HNDLE request_id,
6 EVENT_HEADER *pheader, void *pevent)
71

8 printf ("Received event #)d\\r",

9 pheader—>serial_number) ;

10 }

11

12 main() {

13 INT status, request_id;

14 HNDLE hbuf;

15
16 status = cm_connect_experiment("", "sample",
17 "Simple Analyzer", NULL);

18 if (status !'= CM_SUCCESS)

This page was generated with the help of DOC++

February 1, 2002

http:/ /www. linuxsupportline.com/~doc-+-+

27

4 Quick Start

19 return 1;

20

21 bm_open_buffer ("SYSTEM", EVENT_BUFFER_SIZE,
22 &hbuf) ;

23 bm_request_event(hbuf, 1, TRIGGER_ALL,
24 GET_ALL, request_id, process_event);
25

26 do {

27 status = cm_yield(1000);

28 } while (status '= RPC_SHUTDOWN &&

29 status '= SS_ABORT);

30

31 cm_disconnect_experiment();

32

33 return O;

34 }

This program connects to the experiment ”Sample” on the local computer. It opens event
buffer ”SYSTEM” (which is the default event buffer) and requests all events with ID=1. When an
event of that type is received, the serial number of this event is printed. The lines have following
meaning;:

Line 2: This is the standard MIDAS header file. Make sure the compiler knows its location
(usually add the -I/usr/local/include flag under UNIX and /I
midas
include under Windows NT). Line 5/6: This is the callback routine receiving events. pheader
points to the event header (for a description of its structure refer to Appendix B: MIDAS Event
Format) and pevent points to the data area of the event. Line 16-19: These lines connect to
the experiment ”Sample” on the local computer. The declaration of the cm_connect_experiment/()
function is: INT cm_connect_experiment(char *host_name, char *exp_name, char *client_name,
void (*func)(char*)); Where: host_name is the IP name of the host to connect to (empty if to
connect to the local host). exp_name is the experiment name, client_name is the name of the calling
program as it can be seen by others and the func routine can be supplied to read in a password
if security has been enabled. Line 21/22: The event buffer ”SYSTEM” is opened. If successful,
a non-zero handle for this buffer is returned in hbuf, which can be used, in the following calls.
Line 23/24: This call requests a certain type of events. The syntax is: INT bm_request_event(INT
buffer_handle, short int event_id, short int trigger_mask, INT sampling_type, INT *request_id, void
(*func)(HNDLE,HNDLE,EVENT_HEADER* void*));

The buffer handle is the one obtained from bm_open_buffer. The event_id and trigger mask
select a certain type of event. Only events of that type are received. The event ID is directly
compared with the one contained in the event header of each event, while the trigger mask is
bit-wise compared with the trigger mask in the event.

The event is received only if the event ID’s matches and the trigger masks have at least one
bit in common. To receive all events from the system buffer, values of EVENTID_ALL and
TRIGGER_ALL can be specified. The sampling type specifies events should be received. Two
possible types are currently available:

e GET_ALL Specify that all events from a given type are to be received. If the analyzer pro-
cesses these events slower than the frontend produces them, the frontend gets automatically
blocked periodically to reduce the data rate.

o GET_SOME Tells the Midas buffer system to provide events to the analyzer on request. In
other word, the analyzer will get events without holding the acquisition. If the analyzer

This page was generated with the help of DOC++

February 1, 2002 28

http:/ /www. linuxsupportline.com/~doc-+-+

4 Quick Start

processes events faster than the frontend produces them, the analyzer receives all events. If
the analyzer is slower than the frontend, events are skipped.

On some systems these different modes are called ”May process” and ”Must process”. Line
26-29: This is the standard main loop in a MIDAS program. Since the system is event based,
a central routine has to be called periodically to receive and distribute events. If an event is
received which matches the request, the according callback routine (in this case process_event) is
dispatched. The loop can be broken under an error condition such as SS_ABORT (network error)
or exit request RPC_SHUTDOWN by other program. For this last case ODBEdit has a dedicated
command to shutdown Midas client

[local]/>scl (to show all clients)

Name Host

Simple Analyzer pc810

ODBEdit pc810

[local]/>shutdown "Simple Analyzer"

11:01:02 [Simple Analyzer] Program Simple Analyzer on host pc810 stopped

The parameter to cm_yield is a time-out in milliseconds. It refers to a time after which the
processing control is returned to the main task allowing user code to be activated in a regular
time interval basis. A typical example would be the user command keystrokes handling. Line 31:
Disconnects from the experiment. It is important to call this routine before a program stops to
allow proper network disconnection. After successful compilation of the code, the linking procedure
requires particular libraries: The MIDAS library which is installed in /usr/local/lib/libmidas.a
under UNIX and in c:

midas

nt

lib

midas.lib under NT. The NT library is a shared library where midas.lib only contains references
to the functions. The real code is contained in

winnt

system32

midas.dll, which is needed by the application during run time. If the application is moved to
another PC where MIDAS is not installed, it is enough to move midas.dll to the Windows directory
on the new PC.

4.9.2

Debugging an Analyzer

A common problem in DAQ is a crashing analyzer that has a GET_ALL request and therefore
blocks the whole system. To overcome this problem, a watchdog system has been implemented.
Every client attached to a buffer periodically signals that it is alive by writing the current time to
a client region in the shared memory. This is done using the alarm()() function under UNIX and
a timer under Windows N'T. Whenever the process crashes or is killed, the other clients see that
the crashed client does not update its time any more. In this case all requests from that client
are removed from that buffer automatically to release blocked producers. Stopping the analyzer
via Control-C or the kill command while the ODBEJdit is still running can test this scheme. After
a time-out of 10 seconds ODBEdit considers the analyzer to be dead and removes it from the
ODB and all buffers. While the watchdog scheme works fine for normal operation, it can cause
problems when running the analyzer inside a debugger. When the debugger stops the program at

This page was generated with the help of DOC++

February 1, 2002 29

http:/ /www. linuxsupportline.com/~doc-+-+

4 Quick Start

a break point, signals (UNIX) and timers (NT) are disabled. Since the application cannot signal
that it is still alive, it gets removed from the ODB and all buffers after 10 seconds. Indicating to
the other applications that the alive” status of this client should not be checked can solve this
problem. This can be done by calling the function cm_set_watchdog params() at the begin of a
program. The time-out of zero (second parameter) tells other applications to skip the ”alive” test
on this application

cm_set_watchdog-params(FALSE, 0);

At last it may also happen that a program which has its alive tests disabled crashes. In this
case the producers involved in the experiment might be blocked forever. The only remedy in this
case is to manually remove the crashed application with the ODBEdit command cleanup. This
command removes all dead clients without checking their time-out value.

4.9.3

Byte swapping

Care has to be taken if the byte ordering (big endian and little endian) differs between frontend and
back-end. This can happen for example when the frontend is a Motorola CPU (68k or PowerPC)
and the back-end a DEC Alpha or Intel PC. The MIDAS RPC layer takes care of byte swapping
automatically for all functions called remotely, but not for the data part of events since this is
user defined. This problem has been resolved by leaving intact the byte order of the data within
the frontend and moves that operation into the logger. The data then are swapped before going
to the logging channel on the back-end computer. This choice has been made in order to reduce
frontend CPU load and therefore decrease the data acquisition dead time. The online analyzer
will also have to swap the event content on the fly, but will have little impact on the acquisition
as it acquire event usually in GET_SOME mode. To swap individual words or long-words, the
C macros WORD_SWAP() (16 bit), DWORD_SWAP() (32 bit) and QWORD_SWAP() (64 bit or
double float) are included in the header file msystem.h. For events in MIDAS or YBOS format,
functions are included in the MIDAS library, which swap a complete event:

e ybos_swap_event(DWORD *pevent): for YBOS events.
e bk _swap(void *pevent): for MIDAS events. Check function call bank or event
The pointer pevent points to the data area of the event. All banks are scanned and swapped

according to the data type content.

4.94

Writing a FORTRAN Analyzer

An analyzer can also be written in FORTRAN. The only problem is that the MIDAS library is
written in C, which uses different parameter passing schemes than FORTRAN. Therefore a set of
?wrapper” routines have been written. These routines are contained in fmidas.c and export some
of the MIDAS library functions in a way that they can be called easily from FORTRAN. The
file fmidas.c needs to be compiled and linked to a FORTRAN analyzer. A additional FORTRAN
include file midas.inc has been written which defines MIDAS functions and constants. By using
these files, a FORTRAN analyzer looks very similar to the C analyzer:

This page was generated with the help of DOC++

February 1, 2002 30

http:/ /www. linuxsupportline.com/~doc-+-+

4 Quick Start

SUBROUTINE PROCESS_EVENT (HBUF, HREQ, HEADER, EVENT)
INTEGER*4 HBUF, HREQ, HEADER(4), EVENT (%)

WRITE (*,*) HEADER(2)
END

PROGRAM TEST

INCLUDE ’midas.inc’
INTEGER*4 STATUS,REQUEST_ID
INTEGER*4 HBUF

STATUS = CM_CONNECT_EXPERIMENT(’’,’sample’,

+ ’Fortran Analyzer’)
IF (STATUS .NE. CM_SUCCESS) STOP

CALL BM_OPEN_BUFFER(’SYSTEM’, EVENT_BUFFER_SIZE,

+ HBUF)
CALL BM_REQUEST_EVENT(HBUF, 1, TRIGGER_ALL,
+ GET_ALL, REQUEST_ID)

DO WHILE (STATUS .NE. RPC_SHUTDOWN .AND.
+ STATUS .NE. SS_ABORT)
STATUS = CM_YIELD(1000)
END DO

CALL CM_DISCONNECT_EXPERIMENT()

END

The only difference is the callback routine PROCESS_EVENT() which cannot be passed to
BM_REQUEST_EVENTY() as a parameter like in C. Therefore the function PROCESS_EVENTY()

is called directly from the system. Note that this function must be present in the FORTRAN
program even if no events are requested. Otherwise one would get a linker error.

4.10

Running an Experiment

Names
4.10.1 Starting/Stoppinga Runcociiiiiiii, 32
4.10.2 Monitoring a Run 32

A whole run can be controlled through the ODBEdit program. It contains functions to
start/ stop/pause and resume runs. Since all parameters, configuration and status information
are contained in the ODB, the whole experiment can be monitored and controlled by accessing
these data. The ODB is structured as a file system under which sub-trees are constructed. Each
sub-tree can contain parameters, variables, information or other sub-tree that are specific to the
declaration of the original sub-tree. Several sub-tree’s name are reserved by the system in order
to provide basic organization of the Online Database.

This page was generated with the help of DOC++

February 1, 2002 31

http:/ /www. linuxsupportline.com/~doc-+-+

4 Quick Start

4.10.1

Starting/Stopping a Run

Run transitions can be made with the ODBEdit commands start, stop, pause and resume. When
starting a run, the current run number is automatically incremented by one. The user is asked to
confirm the run number. By pressing return the proposed value is accepted:

[local]l/>start

Run number [2]:<return to accept "2">

Are the above parameters correct? ([y]/n/q):<return to accept "y">
Starting run #2

Run #2 started

The current run information is kept in the 0DB under /Runinfo:
[locall/>cd /Runinfo

[local] /Runinfo>ls

State 3

Run number 2

Transition in progress 0

Start Time Thu Jan 15 11:21:19 1998
Start Time binary 884866879

Stop Time Thu Jan 15 11:21:12 1998
Stop Time binary 884866579

The State is the current run state: 1 for stopped, 2 for paused and 3 for running. The Start
Time binary is in standard UNIX format (seconds since 1.1.1970) and can be used by programs to
calculate the duration of the current run. The Stop Time is the time when the previous run has
been stopped. When a logger writes to Exabyte tapes, starting and stopping of a run can take up
to 60 seconds since mounting Exabyte tapes and writing EOF marks is very slow. Therefore it can
happen that the run is stopping while someone on another computer tries to restart already the
next run. Since this would confuse the system, a transition lock has been implemented. During a
transition the Transition in progress flag from above is set to 1 causing all other transition requests
to be blocked. If ODBEdit is killed during a transition, this flag might not be reset to 0 thus
blocking all future transition request falsely. In this case the flag can be reset manually with:

[local]/>set ” /Runinfo/Transition in progress” 0

The MIDAS State model is flat, there is no hierarchy of components and sub-components
like in other systems. Each client can register to receive a transition. The program making the
transition (usually ODBEdit) then contacts all registered clients and their transition callback
routine is executed via RPC.

4.10.2

Monitoring a Run

Checking the statistics and status data in the ODB can monitor an experiment. A utility called
mstat comes with MIDAS that displays the most interesting data:

The first section displays general run information, the second section displays the statistics
for the different equipment, the third section logging information and the last section shows a
list of all active clients. This information can be found in the ODB in the directories /Runinfo,

This page was generated with the help of DOC++

February 1, 2002 32

http:/ /www. linuxsupportline.com/~doc-+-+

4 Quick Start

/Equipment/<equipment name> /Statistics, /Logger and /System/Clients. If the frontend sends
event copies to the ODB (via the RO_ODB flag), they can be checked under the Variables tree:

[local]/>cd /Equipment/Trigger/Variables

[locallVariables>1ls

ADCO
1378
980
797
398
3271
1322
1227
1725

TDCO
3289
2911
3883
4065
2784
3626
1130
2691

As can be seen the trigger event contains two banks named ADCO and TDCO that contain eight
values produced by the frontend of the sample experiment.

4.11

Troubleshootting

Midas is neither a "bug free” nor a "transparent” package. This documentation is an attempt
to shed some light on the inside of the system and to make it a little bit more intuitive. But
troubleshooting will remain especially hard when the user is not well familiar or has little expe-
rience with the system. The main appearance of a problem with Midas will be when either the
frontend is not showing as client to the experiment, the Online Database is not accessible from the
keyboard or when the data logging to a tape device (usually) is no longer working. In these cases,
required action from the user is necessary to restore the operation of the system.

4.12

Crashed Frontend

If the frontend crashes due to malfunction code in the event readout routine, it normally discon-
nects the TCP connection from the back-end. In this case it can be simply restarted. If the run is
still going on, the frontend automatically enters the running state and continues sending events.
The only problem might be that the serial number of the events starts again at one.

If the frontend runs on an operating system which does not gracefully close down the TCP
connection (this is true for VxWorks and MS-DOS), the back-end still assumes that the frontend

This page was generated with the help of DOC++

February 1, 2002 33

http:/ /www. linuxsupportline.com/~doc-+-+

4 Quick Start

is alive. If the frontend is then restarted, it won’t be able to open the statistics record since it can
only be open by one frontend. To solve this problem, watchdog messages are sent over the network
between the back-end and the frontend to insure that the frontend is alive. If the frontend does
not respond after 30 seconds, the connection is aborted by the back-end automatically. Therefore
the best strategy to recover from a crashed frontend is to wait 30 seconds until the watchdog
period expires. Then the frontend can be restarted safely.

4.13

Corrupted ODB

The ODB contents is kept in shared memory. When all clients exit, it is written to a disk file
(.ODB.SHM) where it is loaded next time a new client starts. This ensures persistency even if
the computer gets rebooted in between. Since the ODB is mapped to the address space of all
local clients, they might overwrite some of the ODB contents if they contain malfunctioning code.
This is especially true for user written analyzers which write over array boundaries etc. If this
happens, the ODB contents might get corrupted. This leads to situation where ODBEdit displays
strange contents or even crashes. In worst case ODBEdit won’t start any more with an error
”ODB full” or similar. To solve the problem, the disk file ODB.SHM (.ODB.SHM under UNIX)
must be deleted. If ODBEdit is then restarted, the ODB is empty except the /System entry which
is created when ODBEdit starts. To restore the previous ODB contents, the file last.odb can be
loaded into the ODB. This ASCII ODB dump file gets written after each run in the data directory
by the logger. This file represents the exact ODB state after the last run. The contents of this file
might be loaded back from this file with ODBEdit:

cd <data directory> odbedit [local]/>load last.odb

Any changes in the ODB after the last run has been stopped are not contained in this file and
have to be applied manually.

4.14

Tape problems

Tapes drives can produce write errors when using bad tapes or when the write heads are dirty.
The logger then tries to stop the run, even if the last events cannot be written to tape. It is then
recommended to rewind the tape with the ODBEdit rewind command, clean the tape heads with
a cleaning cartridge and start a new tape. It also has to be checked that the problems don’t arise
from the SCSI bus because of wrong termination or too many devices on the bus. The logger
releases the tape after a run has been stopped. Experienced users might use the mtape utility to
manipulate the tape between runs. If the tape contains a useless run which should be overwritten,
it might be spooled back with the bsf command of the mtape utility. If a new tape is inserted
into a tape drive that contains already some data, the tape is spooled forward to the end of the
recorded data. If the tape should be overwritten, it has to be erased manually with the mtape
utility by writing an EOF directly at the beginning of the tape.

This page was generated with the help of DOC++

February 1, 2002 34

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

5

Internal features

The main internal components of the system.

Names

5.1 Frontend code ... 35
5.2 ODB Structure ... 51
5.3 Hot Link 66
5.4 History System 69
5.5 Alarm System L 70
5.6 Slow Control System il 72
5.7 Electronic Logbook 74
5.8 Log file 74

This section refers to the Midas built-in capabilities. The following sections describe in more
details the essential aspect of each feature starting from the frontend to the Electronic logbook.

->Skip to Utilities

5.1

Frontend code

Names

5.1.1 The Equipment structureot 40
5.1.2 FIXED event constructionccooiiiiieaia.n 44
5.1.3 MIDAS event construction 45
5.1.4 YBOS event construction 0. 46
5.1.5 Deferred Transition i, 47
5.1.6 Super Event L 49

Under MIDAS, experiment hardware is structured into ”equipment” which refers to a collection of
hardware devices such as: a set of high voltage supplies, one or more crates of digitizing electronics
like ADCs and TDCs or a set of scaler. On a software point of view, we keep that same equipment
term to refer to the mean of collecting the data related to this "hardware equipment”. The data
from this equipment is then gathered into an ”event” and send to the back-end computer for
logging and/or analysis.

This page was generated with the help of DOC++

February 1, 2002 35

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

The frontend program (image) consists of a system framework contained in mfe.c (hidden to
the user) and a user part contained in frontend.c. The hardware access is only apparent in the
user code. Several libraries and drivers exist for various bus systems like CAMAC VME or RS5232.
They are located in the drivers directory of the MIDAS distribution. Some libraries consist only of
a header file, others of a C file plus a header file. The file names usually refer to the manufacturer
abbreviation followed by the model number of the device. The libraries are continuously expanding
to widen Midas support.

ESONE standard routines for CAMAC are supplied and permit to re-use the frontend code
between different platform as well as different CAMAC hardware interface without the need of
modification of the code.

The user frontend code consists of a several sections described in order below. Example of
frontend code can be found under the ../ezamples/experiment directory:

Global declaration Up to the User global section the declarations are system wide and should not be remove.

— frontend_name value can be modified to reflect the purpose of the code.

— frontend_call_loop enable the function frontend_loop() to be run on every frontend loop
(see frontend_loop() function below).

— display_period defined in millisecond the time interval between refresh of a frontend
status display. The value of zero disable the display. If the frontend is started in the
background with the display enabled, the stdout should be redirected to the null device
to prevent process to hang.

— maz_event_size specify the maximum size of the expected event in byte.

— event_buffer_size specify the maximum size of the buffer in byte to be allocated by the
system.

After these system parameters, the user may add his or her own declarations.

// The frontend name (client name) as seen by other MIDAS clients
char *frontend_name = "Sample Frontend";

// The frontend file name, don’t change it
char *frontend_file_name = __FILE__;

// frontend_loop is called periodically if this variable is TRUE
BOOL frontend_call_loop = FALSE;

//a frontend status page is displayed with this frequency in ms
INT display_period = 3000;

//maximum event size produced by this frontend
INT max_event_size = 10000;

//buffer size to hold events
INT event_buffer_size = 10*10000;

// Global user section
// number of channels
#define N_ADC 8
#define N_TDC 8
#define N_SCLR 8

CAMAC crate and slots
#define CRATE 0

This page was generated with the help of DOC++

February 1, 2002 36

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

#define SLOT_C212 23
#define SLOT_ADC 1
#define SLOT_TDC 2
#define SLOT_SCLR 3

Prototype functions The first group of prototype(7) declare the pre-defined system functions should be present.
The second group defines the user functions associated to the declared equipments. All the
fields are described in detailed in the following section.

INT frontend_init();

INT frontend_exit();

INT begin_of_run(INT run_number, char *error);
INT end_of_run(INT run_number, char *error);
INT pause_run(INT run_number, char *error);
INT resume_run(INT run_number, char *error);
INT frontend_loop();

INT read_trigger_event(char *pevent, INT off);
INT read_scaler_event(char *pevent, INT off);

Remark Each equipment has the option to force it-self to run at individual transition time see
The Equipment structure / RO_RUNNING. At transition time the system functions be-
gin_of-run(), end_of-run(), pause_run(), resume_run() runs prior the equipment func-
tions. This gives the system the chance to take basic action on the transition request
(Enable/disable LAM) before the equipment runs.

Equipment definition See The Equipment structure for further explanation.

#undef USE_INT
EQUIPMENT equipment[] = {

{ "Trigger", // equipment name
1, 0, // event ID, trigger mask
"SYSTEM", // event buffer
EQ_INTERRUPT, // equipment type
EQ_POLLED, // equipment type
LAM_SOURCE(CRATE, LAM_STATION(SLOT_C212)), // event source crate 0
"MIDAS", // format
TRUE, // enabled
RO_RUNNING | // read only when running
RO_ODB, // and update 0ODB
500, // poll for 500ms
0, // stop run after this event limit
0, // number of sub events
0, // don’t log history
llll, llll, ||||,
read_trigger_event, // readout routine

},

}

Pre-defined functions The sequence of function calls throughout the frontend code is the following:

frontend init, begin of run, [pause/resume], end of run, , frontend exit

INT frontend_init() This function run once only at the application startup. Allows hardware checking, load-
ing/setting of global variables, hot-link settings to the ODB etc... In case of CAMAC
the standard call can be:

This page was generated with the help of DOC++

February 1, 2002 37

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

cam_init () ; // Init CAMAC access
cam_crate_clear (CRATE) ; // Clear Crate
cam_crate_zinit (CRATE) ; // Z crate
cam_inhibit_set (CRATE); // Set I crate

return SUCCESS;

INT run_number, char *error) This function is called for every run start transition. Allows to update user parameter,
load/setup/clear hardware. At the exit of this function the acquisition should be armed
and ready to test the LAM. In case of CAMAC frontend, the LAM has to be declared
to the Crate Controller. The function cam_lam_enable(CRATE, SLOT-IO) is then
necessary in order to enable the proper LAM source station. The LAM source station
has to alos be enabled (F26).

The argument run_number provides the current run number being started. The ar-
gument error can be used for returning a message to the system. This string will be
logged into the mdas.log file.

// clear units

camc (CRATE, SLOT_C212, 0, 9);
camc (CRATE, SLOT_2249A, 0, 9);
camc (CRATE, SLOT_SC2, 0, 9);
camc (CRATE, SLOT_SC3, 0, 9);

camc (CRATE, SLOT_C212, 0, 26); // Enable LAM generation
cam_inhibit_clear (CRATE) ; // Remove I
cam_lam_enable (CRATE, SLOT_C212); // Declare Station to CC as LAM source

// set and clear OR1320 pattern bits

camo (CRATE, SLOT_OR1320, 0, 18, 0x0330);

camo (CRATE, SLOT_OR1320, 0, 21, 0x0663); // Open run gate, reset latch
return SUCCESS;

surce, INT count, BOOL test) If the equipment definition is EQ_POLLED as a acquisition type, the poll_event will be
call as often as possible over the corresponding poll time (ex:500ms see The Equipment
structure) given by each polling equipment. The code below shows a typical CAMAC
LAM polling loop. The source corresponds to a bitwise LAM station susceptible to
generate LAM for that particular equipement. If the LAM is ORed for several station
and is independent of the equipment, the LAM test can be simplified (see example
below)

// Trigger event routines ---- -—
INT poll_event(INT source, INT count, BOOL test)
// Polling routine for events. Returns TRUE if event
// is available. If test equals TRUE, don’t return. The test
// flag is used to time the polling.

int i;
DWORD lam;

for (i=0 ; i<count ; i++)
{
cam_lam_read (LAM_SOURCE_CRATE (source), &lam);
if (lam & LAM_SOURCE_STATION(source)) // Any of the equipment LAM
// *%¥% or *¥*
if (lam) // Any LAM (independent of the equipment)
if (ltest)
return lam;
}

return 0;

This page was generated with the help of DOC++

February 1, 2002 38

http:/ /www. linuxsupportline.com/~doc-+-+

Internal features

}

Remark When multiple LAM source is specified for a given equipment like:

r_event(char *pevent, INT off)

INT run_number, char *error)

INT run_number, char *error)

LAM_SOURCE(JW_C, LAM_STATION(GE_N)
| LAM_STATION(JW_N)),
The polling function will pass to the readout function the actual LAM pattern
read during the last polling. This pattern is a bitwise LAM station. The content
of the pevent will be overwritten. This option allows you to determine which of the
station has been the real source of the LAM.

INT read_trigger_event(char #*pevent, INT off)

{
DWORD lam;

lam = *((DWORD *)pevent);

// check LAM versus MCS station

// The clear is performed at the end of the readout function
if (lam & LAM_STATION(JW_N))

{

}
}

Event readout function defined in the equipment list. Refer to further section for event
composition explanation FIXED event construction, MIDAS event construction, YBOS
event construction.

// Event readout - ———- - R
INT read_trigger_event(char *pevent, INT off)

{
WORD #*pdata, a;

// init bank structure
bk_init(pevent) ;

// create ADC bank
bk_create(pevent, "ADCO", TID_WORD, &pdata);

}

These two functions are called respectively upon ”"Pause” and ”Resume” command.
Any code relevant to the upcoming run state can be include. Possible commands when
CAMAC is involved can be cam_inhibit_set(CRATE); and cam_inhibit_clear(CRATE);

The argument run_number provides the current run number being paused/resumed.
The argument error can be used for returning a message to the system. This string will
be logged into the mdas.log file.

For every ”stop run” transition this function is called and provides opportunity to
disable the hardware. In case of CAMAC frontend the LAM should be disable.

The argument run_number provides the current run number being ended. The argument
error can be used for returning a message to the system. This string will be logged into
the mdas.log file.

// set and clear OR1320 pattern bits or close run gate.
camo (CRATE, SLOT_OR1320, 0, 18, 0x0CC3);
camo (CRATE, SLOT_OR1320, 0, 21, 0x0990);

camc (CRATE, SLOT_C212, 0, 26); // Enable LAM generation

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 39

5 Internal features

cam_lam_disable(CRATE, SLOT_C212); // disable LAM in crate controller
cam_inhibit_set (CRATE); // set crate inhibit

INT frontend_exit() This function runs when the frontend is requested to terminate. Can be used for local
statistic collection etc.

5.1.1

The Equipment structure

-> Next FIXED event construction

To write a frontend program, the user section (frontend.c) has to have an equipment list
organized as a structure definition. Here is the structure listing for a trigger and scaler equipment
from the sample experiment example frontend.c.

#undef USE_INT
EQUIPMENT equipment[] = {

{ "Trigger", // equipment name
i, 0, // event ID, trigger mask
"SYSTEM", // event buffer
EQ_INTERRUPT, // equipment type #else
EQ_POLLED, // equipment type
LAM_SQURCE(0,0xFFFFFF),// event source crate 0, all stations
"MIDAS", // format
TRUE, // enabled
RO_RUNNING | // read only when running
RO_ODB, // and update 0DB
500, // poll for 500ms
0, // stop run after this event limit
0, // number of sub events
0, // don’t log history

nn nn un
B 1) B

read_trigger_event, // readout routine

”trigger”,”scaler” : Each equipment has to have a unique equipment name defined under a
given node. The name will be the reference name of the equipment generating the event.

1, 0 Each equipment has to be associated to an unique event ID and to a trigger mask. Both the
event ID and the trigger mask will be part of the event header of that particular equipment.
The trigger mask can be modified dynamically by the readout routine to define a sub-event
type on an event-by-event basis. This can be used to mix ”physics events” (from a physics
trigger) and ”calibration events” (from a clock for example) in one run and identify them
later. Both parameters are declared as 16bit value. If the Trigger mask is used in a single
bit-wise mode, only up to 16 masks are possible.

”»SYSTEM?” After composition of an "equipment”, the Midas frontend mfe.c takes over the
sending of this event to the ”system buffer” on the back-end computer. Dedicated buffer

This page was generated with the help of DOC++

February 1, 2002 40

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

can be specified on those lines allowing a secondary stage on the back-end (Event builder to
collect and assemble these events coming from different buffers in order to compose a larger
event. In this case the event coming from the frontend are called fragment). In this example
both events are placed in the same buffer called "SYSTEM” (default).

Remark If this field is left empty (””) the readout function associated to that equipment
will still be performed, but the actual event won’t be sent to the buffer. The positive
side-effect of that configuration is to allow that particuliar equipment to be mirrored
in the ODB if the RO_ODB is turned on.

EQ xxx The field specify the type of equipment EQ_PERIODIC, EQPOLLED or
EQINTERRUPT. In any selected case, when the equipment will be required to run, a de-
clared function will be call doing the actual user required operation. For the EQ_PERIODIC
case, another parameter is necessary to set the periodicity of the call. In the case of the
EQ_POLLING mode, the name of the routine performing the trigger check function is de-
faulted to poll_event()(present in frontend.c). As polling consists on checking a variable for
a true condition, if the loop would be infinite, the frontend would not be able respond to
any network commands. Therefore the loop count is determined when the frontend starts so
that it returns after a given time-out when no event is available. This time-out is usually in
the order of 500 milliseconds. For EQ INTERRUPT, Midas requires complete configuration
and control of the interrupt source. This is provided by an interrupt configuration routine
interrupt_configure that has to be coded by the user in the user section of the frontend code.
A pointer to this routine is passed to the system instead of the polling routine. The interrupt
configuration routine has the following declaration:

INT interrupt_configure(INT cmd, INT source [], PTYPE adr)
{
switch(cmd)
{
case CMD_INTERRUPT_ENABLE:
cam_interrupt_enable() ;
break;
case CMD_INTERRUPT_DISABLE:
cam_interrupt_disable();
break;
case CMD_INTERRUPT_ATTACH:
cam_interrupt_attach((void (*) ())adr);
break;
case CMD_INTERRUPT_DETACH:
cam_interrupt_detach() ;
break;

}
return CM_SUCCESS;

}

Under the four commands listed above, the user has to implement the adequate hardware
operation performing the requested action. In drivers examples can be found on such a
interrupt code. See source code such as hyt1331.c, ces8210.c.

e CMD_INTERRUPT_ENABLE: to enable an interrupt

e CMD_INTERRUPT_DISABLE: to disable an interrupt

¢ CMD_INTERRUPT_INSTALL: to install an interrupt callback routine at address adr.

e CMD_INTERRUPT_DEINSTALL: to de-install an interrupt.
LAM_SOURCE(0,0xFFFFFF) This parameter is a bit-wise representation of the 24 CAMAC

slots which may raise the LAM. It defines which CAMAC slot is allowed to trigger the call
to the readout routine. (See below read_trigger_event()).

This page was generated with the help of DOC++

February 1, 2002 41

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

”MIDAS” This line specifies the data format used for generating the event. The following
options are possible: MIDAS, YBOS and FIXED. The format has to agree with the way the
event is composed in the user read-out routine. It tells the system how to interpret an event
when it is copied to the ODB or displayed in a user-readable form.

MIDAS and YBOS or FIXED and YBOS data format can be mixed at the
frontend level, but the data logger (mlogger) is not able to handle this format
diversity on a event-by-event basis. In practice a given experiment should keep

the data format identical throughout the equipment definition.

TRUE ”enable” switch for the equipment. Only when enable (TRUE) the related equipment is
active.

RO_RUNNING Specify when the read-out of an event should be occurring (transition state) or
be enabled (state). Following options are possible:

RO_RUNNING Read on state "running”.

RO_STOPPED Read on state ”stopped”.

RO_PAUSED Read on state ”paused”.

RO_BOR Read after begin-of-run.

RO_EOR Read before end-of-run

RO_PAUSE Read when run gets paused.

RO_RESUME Read when run gets resumed.

RO_TRANSITIONS Read on all transitions.

RO_ALWAYS Read independently of the states and force a read for all transitions.
RO_ODB Equipment event mirrored into ODB under variables.

These flags can be combined with the logical OR operator. Trigger events in the above
example are read out only when running while scaler events is read out when running and
additionally on all transitions. A special flag RO_ODB tells the system to copy the event
to the /Equipment/<equipment name>/Variables ODB tree once every ten seconds for di-
agnostic. Later on, the event content can then be displayed with ODBEdit.

500 Time interval for Periodic equipment (EQ_PERIODIC) or time out value in case of
EQ_POLLING (unit in millisecond).

0 (stop after...) Specify the number of events to be taken prior forcing an End-Of-Run transi-
tion. The value 0 disables this option.

0 (Super Event) Enable the Super event capability. Specify the maximum number of events in
the Super event.

0 (History System) Enable the MIDAS history system for that equipment. The value (positive
in seconds) indicates the time interval for generating the event to be available for history
logging by the mlogger task if running.

79 29 97 Reserved field for system. Should be present and remain empty.

read_trigger_event User read-out routine declaration (could be any name). Every time
the frontend is initialized, it copies the equipment settings to the ODB under /Equip-
ment/<equipment name>/Common. A hot-link to that ODB tree is created allowing some
of the settings to be changed during run-time. Modification of ”Enabled” flag, RO xxx flags,
”period” and ”event limit” from the ODB is immediately reflected into the frontend which
will act upon them.

This function has to be present in the frontend code and will be called for every trigger
under one of the two conditions:

This page was generated with the help of DOC++

February 1, 2002 42

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

In polling mode The poll_event has detected a trigger request while polling on a trigger
source.

In interrupt mode An interrupt source pre-defined through the interrupt_configuration
has occurred.

Remark 1 The first argument of the readout function provide the pointer to the newly
constructed event and point to the first valid location for storing the data.

Remark 2 The content of the memory location pointed by pevent prior its uses in the
readout function contains the LAM source bitwise register. This feature can be ex-
ploited in order to identify which slot has triggered the readout when multiple LAM
has been assigned to the same readout function.

Example:

. in the equipment declaration

LAM_SOURCE(JW_C, LAM_STATION(GE_N) | LAM_STATION(JW_N)), // event source

nn nn nn
B 1) B

event_dispatcher, // readout routine

INT event_dispatcher(char *pevent)

{
DWORD lam, dword;
INT size=0;
EQUIPMENT *eq;

// the *pevent contains the LAM pattern returned from poll_event
// The value can be used to dispatch to the proper LAM function

// ''!! ONLY one of the LAM is processed in the loop !!!!
lam = *((DWORD *)pevent);

// check LAM versus MCS station
if (lam & LAM_STATION(JW_N))
{

// read MCS event
size = read_mcs_event (pevent) ;

}
else if (lam & LAM_STATION(GE_N))
{

// read GE event
size = read_ge_event(pevent) ;

return size;

}

Remark 3 In the above example, the Midas Event Header will contains the same Event ID
as well as the Trigger mask for both LAM. The event serial number will be incremented
by one for every call to event_dispatcher as long as the returned size is non-zero.

Remark 4 The return value should represent the number of bytes collected in this function.
If the returned value is set to zero, The event will be dismissed and the serial number
to that event will be decremented by one.

This page was generated with the help of DOC++

February 1, 2002 43

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

5.1.2

FIXED event construction

-> Next MIDAS event construction

The FIXED format is the simplest event format. The event length is fixed and maps to a
C structure that is filled by the readout routine. Since the standard MIDAS analyzer cannot
work with this format, it is only recommended for experiment, which use its own analyzer and
want to avoid the overhead of a bank structure. For fixed events, the structure has to be defined
twice: Once for the compiler in form of a C structure and once for the ODB in form of an ASCII
representation. The ASCII string is supplied to the system as the ”init string” in the equipment
list.

Following statements would define a fixed event with two ADC and TDC values:

typedef struct {

int adcO;

int adcl;

int tdcO;

int tdci;
} TRIGGER_EVENT;
char *trigger_event_str[] = {
"adcO = INT : O",
"adcl = INT : O",
"tdcO = INT : O",
"tdcl INT : O",
} ASUM_BANK;

The trigger_event_str has to be defined before the equipment list and a reference to it has to
be placed in the equipment list like:

read_trigger_event, // readout routine
poll_trigger_event, // polling routine
trigger_event_str, // init string

},

The readout routine could then look like this, where the <...> statements have to be filled with
the appropriate code accessing the hardware:

INT read_trigger_event(char *pevent)

{
TRIGGER_EVENT *ptrg;

ptrg = (TRIGGER_EVENT *) pevent;
ptrg->adcO0 = <...>;

ptrg->adcl = <...>;
ptrg->tdc0 = <...>;
ptrg->tdcl = <...>;

This page was generated with the help of DOC++

February 1, 2002 44

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

return sizeof (TRIGGER_EVENT) ;
}

5.1.3

MIDAS event construction

-> Next YBOS event construction

The MIDAS event format is a variable length event format. It uses "banks” as subsets of an
event. A bank is composed of a bank header followed by the data. The bank header itself is
made of 4 fields i.e: bank name (4 char max), bank type, bank length. Usually a bank contains
an array of values that logically belong together. For example, an experiment can generate an
ADC bank, a TDC bank and a bank with trigger information. The length of a bank can vary
from one event to another due to zero suppression from the hardware. Beside the variable data
length support of the bank structure, onother main advantage is the possibility for the analyzer
to add more (calculated) banks during the analysis process to the event in process. After the first
analysis stage, the event can contain additionally to the raw ADC bank a bank with calibrated
ADC values called CADC bank for example. In this CADC bank the raw ADC values could be
offset or gain corrected.

MIDAS banks are created in the frontend readout code with calls to the MIDAS library.
Following routines exist:

bk_init(), bk_init32() Initializes a bank structure in an event.
bk_create() Creates a bank with a given name (exactly four characters)
bk_close() Closes a bank previously opened with bk_create().
bk_locate() Locate a bank within anevent by its name.

bk_iterate() return bank and data pointers to each bank in the event.
bk_list() construct a string of all the bank name in the event.

bk_size() Returns the size in bytes of all banks including the bank headers in an event.

The following code composes a event containing two ADC and two TDC values, the <...> statements
have to be filled with specific code accessing the hardware:

INT read_trigger_event(char *pevent)

{
INT *pdata;

bk_init (pevent) ;

bk_create(pevent, "ADCO", TID_INT, &pdata);
*pdata++ = <ADCO>

*pdatat++ = <ADC1>

bk_close(pevent, pdata);

bk_create(pevent, "TDCO", TID_INT, &pdata);

This page was generated with the help of DOC++

February 1, 2002 45

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

*pdatat++ = <TDCO>
*pdatat++ = <TDC1>
bk_close(pevent, pdata);

return bk_size(pevent);

Upon normal completion, the readout routine returns the event size in bytes. If the event is
not valid, the routine can return zero. In this case no event is sent to the back-end. This can be
used to implement a software event filter (sometimes called ”third level trigger”).

INT read_trigger_event(char *pevent)
{
WORD *pdata, a;

// init bank structure
bk_init (pevent) ;

// create ADC bank
bk_create(pevent, "ADCO", TID_WORD, &pdata);

// read ADC bank
for (a=0 ; a<8 ; at++)
cami(1l, 1, a, 0, pdata++);

bk_close(pevent, pdata);

// create TDC bank
bk_create(pevent, "TDCO", TID_WORD, &pdata);

// read TDC bank
for (a=0 ; a<8 ; at++)
cami(1l, 2, a, 0, pdata++);

bk_close(pevent, pdata);

return bk_size(pevent);

5.1.4

YBOS event construction

-> Next Deferred Transition

The YBOS event format is also a bank format used in other DAQ systems. The advantage
of using this format is the fact that recorded data can be analyzed with pre-existing analyzers
understanding YBOS format. The disadvantage is that it has a slightly larger overhead than the
MIDAS format and it supports fewer different bank types. An introduction to YBOS can be found
under:

http://www-cdf.fnal.gov/offline/ybos/ybos.html

This page was generated with the help of DOC++

February 1, 2002 46

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

The scheme of bank creation is exactly the same as for MIDAS events, only the routines are
named differently. The YBOS format is double word oriented i.e. all incrementation are done in
4 bytes steps. Following routines exist:

ybk_init Initializes a bank structure in an event.
ybk_create Creates a bank with a given name (exactly four characters)
ybk_close Closes a bank previously opened with ybk_create().

ybk _size Returns the size in bytes of all banks including the bank headers in an event.

The following code creates an ADCO bank in YBOS format:

INT read_trigger_event(char *pevent)
{

DWORD 1i;

DWORD #pbkdat;

ybk_init ((DWORD *) pevent);

// collect user hardware data
ybk_create ((DWORD *)pevent, "ADCO", I4_BKTYPE, (DWORD *) (&pbkdat));
for (i=0 ; i<8 ; i++)
*pbkdat++ = i & OxFFF;
ybk_close ((DWORD #*)pevent, pbkdat);

ybk_create ((DWORD *)pevent, "TDCO", I2_BKTYPE, (DWORD *) (&pbkdat));
for (i=0 ; i<8 ; i++)

*((WORD *)pbkdat)++ = (WORD) (0x10+i) & OxFFF;
ybk_close ((DWORD #*) pevent, pbkdat);

ybk_create ((DWORD *)pevent, "SIMU", I2_BKTYPE, (DWORD *) (&pbkdat)) ;
for (i=0 ; i<9 ; i++)

*((WORD *)pbkdat)++ = (WORD) (0x20+i) & OxFFF;
ybk_close ((DWORD #*) pevent, I2_BKTYPE, pbkdat) ;

return (ybk_size((DWORD *)pevent));

5.1.5

Deferred Transition

-> Next Super Event
This option permits the user to postpone any transition issued by any requester until some

condition are satisfied. As examples:

e It may not be advised to pause or stop a run until let say some hardware has turned off a
particular valve.

This page was generated with the help of DOC++

February 1, 2002 47

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

e The start of the acquisition system is postpone until the beam rate has been stable for a
given period of time.

e While active, a particular acquisition system should not be interrupted until the ”cycle” is
complete.

In these examples, any application having access to the state of the hardware can register to be
a ”transition Deferred” client. It will then catch any transition request and postpone the trigger
of such transition until condition is satisfied. The Deferred Transition requires 3 steps setup:

1. Register the deferred transition.

//-- Frontend Init

INT frontend_init ()

{
INT status, index, size;
BOOL found=FALSE;

// register for deferred transition
cm_register_deferred_transition(TR_STOP, wait_end_cycle);
cm_register_deferred_transition(TR_PAUSE, wait_end_cycle);

2. Provide callback function to serve the deferred transition

//—— Deferred transition callback
BOOL wait_end_cycle(int transition, BOOL first)
{
if (first)
{
transition_PS_requested = TRUE;
return FALSE;
}

if (end_of_mcs_cycle)

{
transition_PS_requested = FALSE;
end_of_mcs_cycle = FALSE;
return TRUE;

}

else
return FALSE;

3. Implement the condition code
In this case at the end of the readout function...

INT read_mcs_event(char *pevent, INT offset)

{

if (transition_PS_requested)

{
// Prevent to get new MCS by skipping re_arm_cycle and GE by GE_DISABLE LAM
cam_lam_disable (JW_C,JW_N);

This page was generated with the help of DOC++

February 1, 2002 48

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

cam_lam_disable (GE_C,GE_N) ;
cam_lam_clear (JW_C,JW_N);
cam_lam_clear (GE_C,GE_N) ;
camc (GE_C,GE_N,0,GE_DISABLE);
end_of_mcs_cycle = TRUE;

}

re_arm_cycle();

return bk_size(pevent);

}

In the example above the frontend code register for PAUSE and STOP. The second argument
of the cm _register wait_end_cycle is the declaration of the callback function. The callback function
will be called as soon as the transition is requested and will provide the Boolean flag first to
be TRUE. By setting the transition_PS_requested, the user will have the acknowledgment of the
transition request. By returning FALSE from the callback you will prevent the transition to
occur. As soon as the user condition is satisfied (end_of mcs cycle = TRUE), the return code in
the callback will be set to TRUE and the requested transition will be issued.

The Deferred transition shows up in the ODB under /runinfo/Requested transition and will
contain the transition code (see Transition Codes).

When the system is in deferred state, an ODBedit override command can be issued to force
the transition to happen. eg: odbedit> stop now, odbedit> start now . This overide will do
the transition function regarless of the state of the hardware involved.

5.1.6

Super Event

-> Next ODB Structure

The Super Event is a option implemented in the frontend code in order to reduce the amount
of data to be transfered to the backend by removing the bank header for each event constructed.
In other words, when an equipment readout in either MIDAS or YBOS format (bank format) is
complete, the event is composed of the bank header followed by the data section. The overhead
in bytes of the bank structure is 16 bytes for bk_init(), 20 bytes for bk_init32() and ybk.init(). If
the data section size is close to the number above, the data transfer as well as the data storage
has an non-negligible overhead. To address this problem, the equipment can be setup to generate
a so called Super Event which is an event composed of the initial standard bank header for the
first event on the super event and up to number of sub event maximum successive data section
before closing of the bank.

To demonstrate the use of it, let see the following example:

e Define equipment to be able to generate Super Fvent

{ "GE", // equipment name
2, 0x0002, // event ID, trigger mask
"SYSTEM", // event buffer
EQ_INTERRUPT, // equipment type
EQ_POLLED, // equipment type
LAM_SQOURCE(GE_C, LAM_STATION(GE_N)), // event source
"MIDAS", // format

This page was generated with the help of DOC++

February 1, 2002 49

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

TRUE, // enabled

RO_RUNNING, // read only when running

200, // poll for 200ms

0, // stop run after this event limit
1000, // ———- > number of sub event <-—---—
0, // don’t log history

IIII’ "ll, Illl’

read_ge_event, // readout routine

},

e Setup the readout function for Super Event collecti

//-- Event readout

on.

enable Super event

// Global and fixed -- Expect NWORDS 16bits data readout per sub-event

#define NWORDS 3

INT read_ge_event(char *pevent, INT offset)

{
static WORD *pdata;

// Super event structure
if (offset == 0)
{
// FIRST event of the Super event
bk_init (pevent) ;
bk_create(pevent, "GERM", TID_WORD, &pdata)
}
else if (offset == -1)
{
// close the Super event if offset is -1
bk_close(pevent, pdata);

// End of Super Event
return bk_size(pevent);

}

// read GE sub event (ADC)

cam16i(GE_C, GE_N, O, GE_READ, pdatat++);
cam16i(GE_C, GE_N, 1, GE_READ, pda‘ta++) H
cam16i(GE_C, GE_N, 2, GE_READ, pdata++);

// clear hardware
re_arm_ge() ;

if (offset == 0)
{

)

// Compute the proper event length on the FIRST event in the Super Event
// NWORDS correspond to the !! NWORDS WORD above !!
// sizeof (BANK_HEADER) + sizeof(BANK) will make the 16 bytes header
// sizeof (WORD) is defined by the TID_WORD in bk_create()

return NWORDS * sizeof (WORD) + sizeof (BANK_HEADER) + sizeof (BANK);

}

else
// Return the data section size only

// sizeof (WORD) is defined by the TID_WORD in bk_create()

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002

50

5 Internal features

return NWORDS * sizeof (WORD);

The encoded decryption of the data section is left to the user. If the number of words per
sub-event is fixed (NWORD), the sub-event extraction is simple. In the case of variable sub-event
length, it is necessary to tag the first or the last word of each sub-event. The content of the
sub-event is essentially the responsibility of the user.

Remark 1 The backend analyzer will have to be informed by the user on the content structure
of the data section of the event as no particular tagging is applied to the Super Event by the
Midas transfer mechanism.

Remark 2 If the Super Event is composed in a remote equipment running a different Endian
mode than the backend processor, it would be necessary to insure the data type consistency
throughout the Super Event in order to guaranty the proper byte swapping of the data
content.

Remark 3 The event rate in the equipment statistic will indicates the rate of sub-events.

5.2

ODB Structure

Names

5.2.1 ODB /System Tree co.viiiiiiiniiiniiiiaenaennnen. 52
5.2.2 ODB /Runlnfo Treeccoiiiiiiiiiniiniiinenannnnnn. 53
5.2.3 ODB /Equipment Treeccoiiiiiiiiiiiiiien.... 54
5.2.4 ODB /LOgEger Tre€ ouiuiitiiiietniiiia i eiaeaaenes 56
5.2.5 ODB /Experiment Treeccoviiiiiiiiiiiii.. 59
5.2.6 ODB /History Treecoiiiiiiiiiiiiiiiiiiiniinn... 62
5.2.7 ODB /Alarms Tree c.oiuiiiiiiiiiiiiiiaiaiaaaaanns 62
5.2.8 ODB /Script Tree ...ttt 64
5.2.9 ODB /Elog Tree ..ottt 64

-> Next Hot Link

The Online Database contains information that system and user wants to share. Basically
all transactions for experiment setup and monitoring go through the ODB. It also contains some
specific system information related to the "Midas client” currently involved in an experiment
(/system).

Each ODB field or so called KEY is accessible by the user through either an interactive way
(see odbedit task) or by C-programming (see db_ function in Midas Library).

The ODB information is stored in a ”tree/branch” structure where each branch refers to a
specific set of data. On the first invocation of the database (first Midas application) a minimal

This page was generated with the help of DOC++

February 1, 2002 51

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

system record will be created. Later on each application will add its own set of parameters to the
database depending on its requirement. For instance, starting the ODB for the first time, the tree
/Runfinfo, /Experiment, /System will be created. The application mlogger (data logger)
will add its own tree /Logger/...

As mentioned earlier, ODB is the main communication platform between any Midas applica-
tion. As such, the content of the ODB is application dependent. Several ”dormant” trees can be
awaken by the user in order to provide extra flexibility of the system. Such ”dormant” tree are
Alias, Script, Edit on Start , Security, Run parameters. Any of those tree are not visible
until the user actually create them. Each of these tree will be discussed in their respective utility.

/Alias Tree containing symbolic links list to any ODB location. Will appear in the Midas Web
server main page (see mhttpd task).

/Script Tree containing list of shell scripts. Will appear as a button in the Midas web server main
page (see mhttpd task).

/Edit on Start Tree containing symbolic links of run information to be requested during the run start up

(see odbedit task).

/Run Parameters Tree containing run parameters which can be requested through the Edit on Start links

(see odbedit task.

5.2.1

ODB /System Tree

The system tree contains information specific to each ”Midas client” currenltly connected to the
experiment. This information is not primarly for the user but may be informative in some respect
to the reader.

[host:expt:Stopped] />1s -r -1 /system

Key name Type #Val Size Last Opn Mode Value
System DIR
Clients DIR
29580 DIR
Name STRING 1 32 i7h 0 R decay
Host STRING 1 256 17h O R host1
Hardware type INT 1 4 i7h 0 R 42
Server Port INT 1 4 17h O R 1227
Transition Mask DWORD 1 4 17h O R 329
Deferred Transition DWORD 1 4 17h O R 6
RPC DIR
16000 BOOL 1 4 17h O R y
16001 BOOL 1 4 17h O R y
29638 DIR
Name STRING 1 32 17h O R MStatus
Host STRING 1 256 17h O R hostl
Hardware type INT 1 4 i7h 0 R 42
Server Port INT 1 4 17h O R 1228
Transition Mask DWORD 1 4 17h O R 0

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 52

5 Internal features

Deferred Transition DWORD 1 4 17h O R 0
29810 DIR
Name STRING 1 32 17h O R Nova_029810
Host STRING 1 256 17h O R host
Hardware type INT 1 4 i7h 0 R 42
Server Port INT 1 4 17h O R 1235
Transition Mask DWORD 1 4 17h O R 0
29919 DIR
Name STRING 1 32 i7h 0 R Epics
Host STRING 1 256 17h O R host
Hardware type INT 1 4 i7h 0 R 42
Server Port INT 1 4 17h O R 1237
Transition Mask DWORD 1 4 17h O R 329
Deferred Transition DWORD 1 4 17h O R 0
RPC DIR
16000 BOOL 1 4 17h O R y
16001 BOOL 1 4 17h O R y
12164 DIR
Name STRING 1 32 6s 0 R ODBEdit
Host STRING 1 256 6s 0 R host2
Hardware type INT 1 4 6s O R 42
Server Port INT 1 4 6s 0 R 4893
Transition Mask DWORD 1 4 6s 0 R 0
Deferred Transition DWORD 1 4 6s 0 R 0
Link timeout INT 1 4 6s 0 R 10000
Client Notify INT 1 4 6s O RWD O
Prompt STRING 1 2566 >99d 0 RWD [%h:%e:%S1%p>
Tmp DIR

Remark 1 The key Prompt sets up the prompt of the ODBEdit program.

odbedit
[local:midas:Stopped]l/>cd /System/
[local:midas:Stopped] /System>1ls

Clients

Tmp

Client Notify 0

Prompt [Ah:%e:%S1%p>

[local:midas:Stopped]/System>set Prompt my_prompt>

my_prompt>set Prompt [Host:%h-Expt:je:State:%s]Path:/p>
[Host:local-Expt:midas-State:S]Path:/System>set Prompt [Host:%h-Expt:je-State:%S]Path:/p>
[Host:local-Expt:midas-State:Stopped]Path:/System>

5.2.2

ODB /Runlnfo Tree

This branch contains system information related to the run information. Several time fields are
available for run time statistics.

odb -e expt -h host
[host:expt:Running]/>1s -r -1 /runinfo

This page was generated with the help of DOC++

February 1, 2002 53

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

Key name Type #Val Size Last Opn Mode Value
Runinfo DIR
State INT 1 4 2h O RWD 3
Online Mode INT 1 4 2h O RW 1
Run number INT 1 4 2h 0O RWD 8521
Transition in progress INT 1 4 2h O RWD O
Requested transition INT 1 4 2h O RWD O
Start time STRING 1 32 2h O RWD Thu Mar 23 10:03:44 2000
Start time binary DWORD 1 4 2h 0 RWD 953834624
Stop time STRING 1 32 2h 0 RWD Thu Mar 23 10:03:33 2000
Stop time binary DWORD 1 4 2h O RWD O

State Specifies in which state the current run is. The possible states are 1: STOPPED, 2:
RUNNING, 3: PAUSED.

Online Mode Specifies the expected acquisition mode. This parameter allows the user to detect
if the data are coming from a ”real-time” hardware source or from a data save-set. Note
that for analysis replay using ”analyzer” this flag will be switched off.

Run number Specifies the current run number. This number is automatically incremented by a
successful run start procedure.

Transition in progress Specifies the current internal state of the system. This parameter is
used for multiple source of ”run start” synchronization.

Requested transition Specifies the current internal of the Deferred Transition state of the sys-
tem.

Start Time Specifies in an ASCII format the time at which the last run has been started.

Start Time binary Specifies in a binary format at the time at which the last run has been
started This field is useful for time interval computation.

Stop Time Specifies in an ASCII format the time at which the last run has been stopped.

Stop Time binary Specifies in a binary format the time at which the last run has been stopped.
This field is useful for time interval computation.

5.2.3

ODB /Equipment Tree

Every frontend create a entry under the /Equipment tree. The name of the sub-tree is taken from
the frontend source code in the equipment declaration (frontend.c). More detailed explanation of
the composition of that tree will be found throughout this document.

{
"DspecCheck", // equipment name
} 2
{
"Scaler", // equipment name
} E]

This page was generated with the help of DOC++

February 1, 2002 54

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

Example:
Key name Type #Val Size Last Opn Mode Value
HistoCheck DIR
DSpecCheck DIR
HistoPoll DIR
HistoEOR DIR
DSpecEOR DIR
Scaler DIR
SuconMagnet DIR
TempBridge DIR
Cryostat DIR
Meters DIR
RFSource DIR
DSPec DIR

The equipment tree is then split in several sections which by default the system creates.

e Common : Contains the system information. Should not be overwritten by the user.
e Variables : Contains the equipment data if enabled (see below).

e Settings : Contains the equipment specific information that the user may want to maintain.
In the case of a ”Slow Control System” equipment, extended tree structure is created by the
system.

e Statistics : Contains equipment statistics information such as event taken, event rate, data
rate.

[local:S]1ls -1 -r /equipment/scaler

Key name Type #Val Size Last Opn Mode Value
Scaler DIR
Common DIR
Event ID WORD 1 2 16h O RWD 1
Trigger mask WORD 1 2 16h O RWD 256
Buffer STRING 1 32 16h O RWD SYSTEM
Type INT 1 4 i6h O RWD 1
Source INT 1 4 16h O RWD O
Format STRING 1 8 16h O RWD MIDAS
Enabled BOOL 1 4 16h O RWD y
Read on INT 1 4 16h O RWD 377
Period INT 1 4 16h O RWD 1000
Event limit DOUBLE 1 8 16h O RWD O
Num subevents DWORD 1 4 16h O RWD O
Log history INT 1 4 16h O RWD O
Frontend host STRING 1 32 16h O RWD midtis03
Frontend name STRING 1 32 16h O RWD feLTNO
Frontend file name STRING 1 256 16h 0 RWD C:\online\sc_ltno.c
Variables DIR
SCLR DWORD 6 4 1s 0 RWD
[o] 0
[1] 0
[2] 0
[3] 0
[4] 0
[5] 0

This page was generated with the help of DOC++

February 1, 2002 55

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features
RATE FLOAT 6 4 1s 0 RWD
[o] 0
[1] 0
[2] 0
[3] 0
[4] 0
[5] 0
Statistics DIR
Events sent DOUBLE 1 8 1s 0 RWDE 370
Events per sec. DOUBLE 1 8 1s O RWDE 0.789578
kBytes per sec. DOUBLE 1 8 1s 0 RWDE 0.0678543

5.2.4

ODB /Logger Tree

The /Logger ODB tree contains all the relevant information for the Midas logger utility (mlogger
task) to run properly. This utility provides the mean of storing the physical data retrieved by the
frontend to a storage media. The user has no code to write in order for the system to operate
correctly. Its general behavior can be customized and multiple logging channels can be defined.
The application supports so far three type of storage devices i.e.: Disk, Tape and FTP channel.

Default settings are created automatically when the logger starts the first time:

Key name Type #Val Size Last Opn Mode Value
Logger DIR
Data dir STRING 1 266 4h O RWD /scrO/spring2000
Message file STRING 1 256 22h 0 RWD midas.log
Write data BOOL 1 4 2h O RWD n
0DB Dump BOOL 1 4 22h 0 RWD y
0DB Dump File STRING 1 256 22h O RWD run)05d.odb
Auto restart BOOL 1 4 22h O RWD y
Tape message BOOL 1 4 156h O RWD y
Channels DIR
0 DIR
Settings DIR
Active BOOL 1 4 ith O RWD y
Type STRING 1 8 th 0 RWD Disk
Filename STRING 1 266 1h O RWD runi05d.ybs
Format STRING 1 8 ith O RWD YBOS
0DB Dump BOOL 1 4 ith O RWD y
Log messages DWORD 1 4 ith O RWD O
Buffer STRING 1 32 ith 0 RWD SYSTEM
Event ID INT 1 4 ith 0 RWD -1
Trigger Mask INT 1 4 ith 0 RWD -1
Event limit DWORD 1 4 ith 0 RWD O
Byte limit DOUBLE 1 8 ith O RWD O
Tape capacity DOUBLE 1 8 ith 0 RWD O
Statistics DIR
Events written DOUBLE 1 8 th 0 RWD O
Bytes written DOUBLE 1 8 th 0 RWD O
Bytes written toDOUBLE 1 8 ith 0 RWD 3.24316e+11
Files written INT 1 4 ith 0 RWD 334

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 56

5 Internal features

Data dir Specifies in which directory files produced by the logger should be written. Once the
Logger in running, this Data Dir will be pointing to the location of the midas.log, ODB
dump files, history files, message files.

In the case of multiple logging channels, the data path for all the channels is defaulted to
the same location. In the case where specific directory has to be assigned to each individual
logging channel, the field /logger/channel/<x>/Settings/Filename can contain the full
path of the location of the .mid, .ybs, .asc file. By finding the OS specific SEPARA-
TOR_DIR (”/”,”). The field Filename will overwite the global Data Dir setting for that
particular channel.

History Dir This field is optional and doesn’t appear by default in the logger. If
present the location of the History System files is reassigned to the defined path instead of
the default Data dir.

Elog Dir This field is optional and doesn’t appear by default in the logger. If present
the location of the Electronic Logbook files is reassigned to the defined path instead of the
default Data dir.

Message file Specifies the file name for the log file which contains all messages from the MIDAS
message system. The message log file is a simple ASCII file, which can be viewed at any
time to see a history of what happened in an experiment.

Write data Global flag which turns data logging on and off for all channels. It can be set to
zero temporarily to make a short test run without data logging. The key ” Write data?” is
predefined logger key for enabling data logging. This action can be overridden by setting
the active key to 1.

ODB Dump Specifies if a dump of the complete ODB should be written to the file specified by
ODB Dump File.

ODB Dump File At the end of each run. If the file name contains a ”%”, this gets replaced by
the current run number similar to the printf() C function. The format specifier %05d from
above would be evaluated to a five digit run number with leading zeros like run00002.0db.
The ODB dump file is in ASCII format and can be used for off-line analysis to check run
parameters etc. For a description of the ASCII format see db_copy.

Auto restart When this flag is one, a new run gets automatically restarted when the previous
run has been stopped by the logger due to an event or byte limit.

Tape message Specifies if tape messages during mounting and writing of EOF marks are gen-
erated. This can be useful for slow tapes to inform all users in a counting house about the
tape status.

channels Sub-directory which contains settings for individual channels. By default, only channel
”0” is created. To define other channels, an existing channel can be copied:

[locallLogger>cd channels
[locallChannels>1s

0

[local]lChannels>copy 0 1
[local] Channels>ls

0

1

The Settings part of the channel tree has the following meaning:

active turns a channel on (1) or off (0). Data is only logged to channels that are active.

This page was generated with the help of DOC++

February 1, 2002 57

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

Type Specify the type of media on which the logging should take place. It can be Disk, Tape or
FTP to write directly to a remote computer via FTP.

Filename Specify the name of a file in case of a disk logging, where %05d is replaced by the
current run number the same way as for the ODB dump files. In the case of a tape logging,
the filename specifies a tape device like /dev/nrmt0 or /dev/nst0 under UNIX or \\.\tape0
under Windows NT. In FTP mode, the filename specifies the access information for the FTP
server. It has the form: host name, port number, user name, password, directory, file name.
The port number for normal FTP is 21 and 1021 for a Unitree Archive like the one used
at the Paul Scherrer Institute. By using the FTP mode, a back-end computer can directly
write to the archive. myhost.my.domain,21,john,password,/usr/users/data,run%05d.mid

Format Specifies the format to be used for writing the data to the logging channel. It can have
four values: MIDAS, YBOS, ASCIT and DUMP. The MIDAS and YBOS binary formats
MIDAS Event Format and YBOS Event Format, respectively. The ASCII format converts
events into readable text format which can be easily analyzed by programs which have
problems reading binary data. While the ASCII format tries to minimize the file size by
printing one event per line, the DUMP format gives a very detailed ASCII representation of
the event including bank information, serial numbers etc, it should be used for diagnostics.
Consistency of this type of format has to be maintained between the frontend declaration
and the logger.

ODB Dump Specifies the complete dump of the ODB to the logging channel before and after ev-
ery run. The ODB content is dumped in one long ASCII string reflecting the status at begin-
of-run event and at end-of-run event. These special events have an ID of EVENT_ID_BOR
and EVENT_ID_EOR (0x8000 and 0x8001) and a serial number equals to the current run
number. An analyzer in the off-line analysis stage can restore the ODB to its online state.

Log messages This is a bit-field for logging system messages. If a bit in this field is set, the
according system message is written to the logging channel as a message event with an ID of
EVENT_ID_MESSAGE (0x8002). The bits are 1 for error, 2 for info, 4 for debug, 8 for user,
16 for log, 32 for talk, 64 for call messages and 255 to log all messages. For an explanation
of these messages refer to Buffer, Event ID and Trigger.

Mask Specify which events to log. See Frontend code to learn how events are selected by their ID
and trigger mask. To receive all events, -1 is used for the event ID and the trigger mask. By
using a buffer other than the ”SYSTEM” buffer, event filters can be realized. An analyzer
can request all events from the ”SYSTEM?” buffer, but only write acceptable events to a new
buffer called "FILTERED”. When the logger request now only events from the new buffer
instead of the ”SYSTEM?” buffer, only filtered events get logged.

Event limit, Byte limit and Tape capacity These fields can be used to stop a run when set
to a non-zero value. The statistics values Events written, Bytes written and Bytes written
total are checked respectively against these limits. When one of these condition is reached,
the run is stopped automatically by the logger. Updates of the statistics branch is performed
automatically every so often. This branch contains the number of events and bytes written.
These two keys are cleared at the beginning of each run. The Bytes written total and
Files written keys are only reset when a tape is rewound with the ODBEdit command
rewind. The Bytes written total entry can therefore be used as an indicator if a tape is full.
The Files written entry can be used off-line to determine how many files on tape have to be
skipped in order to reach a specific run.

This page was generated with the help of DOC++

February 1, 2002 58

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

5.2.5

ODB /Experiment Tree

Under this tree, the Midas system stores special features for the user in order to facilitate his job
on controlling a run. Initially only one empty key is defined labeled Name for the experiment
name. The user can create four system keys in order to provide extra run control flexibility i.e.:
”Run Parameter/”, ”Edit on Start/”, ”Lock when running/” and ”Security/”.

Key name Type #Val Size Last Opn Mode Value
Experiment DIR
Name STRING 1 32 22s 0 RWD chaos
Run Parameter DIR
Beam Polarity STRING 1 256 2h O R negative
Beam Momentum FLOAT 1 4 2h 0 R 91
2LT: log file name? STRING 1 256 2h O R cni0b
1LT: file name? STRING 1 256 2h O R files.cni.zero
Comment STRING 1 256 2h O R ch2 target
Target Angle FLOAT 1 4 2h 0O R 0
Target Material STRING 1 256 2h O R ch2
Edit on start DIR
Beam Momentum FLOAT 1 4 2h 0 R 91
Beam Polarity STRING 1 256 2h O R negative
Target Material STRING 1 256 2h O R ch2
Target Angle FLOAT 1 4 2h 0 R 0
1LT: file name? STRING 1 256 2h O R files.cni.zero
Trigger 2 BOOL 1 4 2h O RWD n
2LT: log file name? STRING 1 256 2h O R cni0b
Comment STRING 1 256 2h 0 R ch2 target
Write data BOOL 1 4 2h 0O RWD y
Lock when running DIR
Run Parameter DIR
Beam Polarity STRING 1 256 2h O R negative
Beam Momentum FLOAT 1 4 2h 0 R 91
2LT: log file name? STRING 1 256 2h 0 R cniOb5
1LT: file name? STRING 1 256 2h 0 R files.cni.zero
Comment STRING 1 256 2h 0 R ch2 target
Target Angle FLOAT 1 4 2h 0 R 0
Target Material STRING 1 256 2h O R ch2
Security DIR
Password STRING 1 32 16h O RWD #$%#@DF5647*
Allowed hosts DIR
host.sample.domain INT 1 4 >99d 0 RWD O
pierre.triumf.ca INT 1 4 >99d 0 RWD O
pcch02.triumf.ca INT 1 4 >99d 0 RWD O
koslxl.triumf.ca INT 1 4 >99d 0 RWD O
koslx2.triumf.ca INT 1 4 >9d 0 RWD O
vwchaos.triumf.ca INT 1 4 >9d 0 RWD O
koslx0.triumf.ca INT 1 4 >9d 0 RWD O
Allowed programs DIR
mstat INT 1 4 >99d 0 RWD O
mhttpd INT 1 4 >9d 0 RWD O
Web Password STRING 1 32 16h 0 RWD pon4@#Q)SSDF2

Name Specifies the name of the experiment.

This page was generated with the help of DOC++

February 1, 2002 59

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

Run Parameters Specifies a fix directory name where you can create and define keys which can
be presented at Run start for run condition selection. The actual activation of any of those
line is done via a ”logical link key” defined in the Edit on Start/ sub-tree. The links don’t
have to point to run parameters necessarily. They can point to any ODB key including the
logger settings. It can make sense to create a link to the logger setting which enables/disables
writing of data. A quick test run can then be made without data logging for example:

[locall/>create key "/Experiment/Run parameters"

Then one or more run parameters can be created in that directory:

[local]Run parameters>create int "Run mode"
[local]Run parameters>create string Comment

Edit on Start Specifies a fix directory name where you can define an ODB link (similar to a
symbolic link in UNIX) key to the pre-defined directory Run Parameters. Any link key
present in this directory pointing to a valid ODB key will be requested for input during the
run start procedure.

A new feature has been added to this section for the possibility of preventing the user to
change the run number from the web interface during the start sequence. By defining the
key /Experiment/Edit on Start/Edit run number as a boolean variable the ability of
editing the run number is enabled or disabled. By default if this key is not present the run
number is editable.

[locall/>create key "Experiment/Edit on start"
[locall/>cd "Experiment/Edit on start"
[local]l/>1n "/Experiment/Run parameters/Run mode" "Run mode"

When a run is started from ODBEJit, all links in /Experiment/Edit on start are scanned
and read in:

[local]/>start
Run mode [0]:1
Run number [3]:<return to accept>
Are the above parameters correct?
(Lyl/n/q): <return to accept "y">
Starting run #2
Run #2 started

[locall/>cd "Experiment/Edit on start"
[local]/>create BOOL "Edit run number"

Lock when running Specifies a fix directory for defining logical link keys to be set in Read only
access mode while the run is in progress. The lock when running can contains logical link
to key(s) for setting these keys protection to ”read only” while running. In the example
below, all the parameters under the declared tree will be switched to read only preventing
any parameters modification during the run.

[local]/>create key "Experiment/Lock when running"
[local]/>cd "Experiment/Lock when running"

[local]l/>1n "/Experiment/Run parameters" "Run parameter"
[locall/>1n "/Logger/Write Data" "Write Data?"

This page was generated with the help of DOC++

February 1, 2002 60

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

Security Specifies a fix directory name where information regarding security can be setup. By
default, there is no restriction for user to connect locally or remotely to a given experiment.
If an access restriction has to be setup in order to protect the experiment from unwilling
access, a password mechanism has to be defined.

Password Specifies the encrypted password for accessing current experiment.

[locall />passwd
Password: <xxxx>
Retype password:<xxxx>

To remove the full password checking mechanism, the ODB security sub-tree has to be
entirely deleted using the following command:

[locall/>rm /Experiment/Security
Are you sure to delete the key
"/Experiment/Security"

and all its subkeys? (y/[n]) y

After running the odb command passwd, four new sub-fields will be present under the
Security tree.

e Password

e Allowed hosts

e Allowed programs
e Web Password

Allowed hosts Specifies a fix directory name where allowed remote hostname can be defined for
free access to the current experiment. While the access restriction can make sense to deny
access to outsider to a given experiment, it can be annoying for the people working directly
at the back-end computer or for the automatic frontend reloading mechanism (MS-DOS,
VxWorks configuration). To address this problem specific hosts can be exempt from having
to supply a password and being granted of full access.

[locall/>cd "/Experiment/Security/Allowed hosts"
[locallrhosts>create int myhost.domain
[locallrhosts>

Where <myhost>.<domain> has to be replaces by the full IP address of the host requesting
full clearance.

Allowed programs Specifies a list of programs having full access to the ODB independently of
the node they running from.

[local]/>cd "/Experiment/Security/Allowed programs"
[local] :S>create int mstat
[locall:S>

Web Password Specifies a separate password for the Web server access (mhttpd task). If this
field is active, the user will be requested to provide the ”Web Password” when accessing
the requested experiment in a ”Write Access”. In all condition the Read Only Access” is
available.

This page was generated with the help of DOC++

February 1, 2002 61

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

5.2.6

ODB /History Tree

This tree is automatically created when the logger is started. The logger will create a default
sub-tree containing the following structure:

[local:midas:S]/History>ls -1 -r

Key name Type #Val Size Last Opn Mode Value
History DIR
Links DIR
System DIR
Trigger per sec. /Equipment/Trigger/Statistics/Events per sec.

Trigger kB per sec. /Equipment/Trigger/Statistics/kBytes per sec.

[local:midas:S]/>cd /History/Links/System/
[local:midas:S]System>1ls -1
Key name Type #Val Size Last Opn Mode Value

Trigger per sec. LINK 1 46 >99d 0 RWD /Equipment/Trigger/Statistics/Events per sec.
Trigger kB per sec. LINK 1 46 >99d 0 RWD /Equipment/Trigger/Statistics/kBytes per sec.

A second sub-tree is added to the /History by the mhttpd task Midas web server when the
button ”History” on the main status page is pressed.

[local:midas:S]/History>ls -1 -r Display

Key name Type #Val Size Last Opn Mode Value
Display DIR
Trigger rate DIR
Variables STRING 2 32 36h O RWD
[o] System:Trigger per sec.
[1]1 System:Trigger kB per sec.
Factor FLOAT 2 4 36h 0 RWD
[o] 1
[11 1
Timescale INT 1 4 36h O RWD 3600
Zero ylow BOOL 1 4 36h O RWD y

This define a default history display under the Midas web server as long as the reference to
”System” is correct (see History System for more information regarding explanation on these fields.

Where the 2 trigger fields are symbolic links to the given path. The sub-tree System defines a
?virtual” equipment and get by the system assigned a particular ” History Event ID”.

5.2.7

ODB /Alarms Tree

This branch contains system information related to alarms. Currently the overall alarm is checked
once every minute. Once the alarm has been triggered, the message associated to the alarm can
be repeated at a different rate. The structure is split in 2 sections. The ” Alarms” itself which
define the condition to be tested and the ” Classes” which defines the action to be taken when

This page was generated with the help of DOC++

February 1, 2002 62

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

the alarm occurs. In order to make the system flexible, beside some default message logging
(Classes/Write system message), each action may have a particular ”detached script” spawned by
it (Classes/Execute command).

odb -e expt -h host
[host:expt:Stopped]/Alarms>ls -1r

Key name Type #Val Size Last Opn Mode Value
Alarms DIR
Alarm system active BOOL 1 4 6h O RWD n
Alarms DIR
Test DIR
Active BOOL 1 4 3ih O RWD n
Triggered INT 1 4 3ih O RWD O
Type INT 1 4 3ith O RWD 3
Check interval INT 1 4 3ih O RWD 60
Checked last DWORD 1 4 3ith O RWD O
Time triggered firstSTRING 1 32 3ith O RWD
Time triggered last STRING 1 32 3ith 0 RWD
Condition STRING 1 256 3ith O RWD /Runinfo/Run number > 10
Alarm Class STRING 1 32 3ith O RWD Alarm
Alarm Message STRING 1 80 3lh 0 RWD Run number became too large
wc3_anode DIR
Active BOOL 1 4 3lh 0O RWD n
Triggered INT 1 4 3ih O RWD O
Type INT 1 4 3th O RWD 3
Check interval INT 1 4 3ith O RWD 10
Checked last DWORD 1 4 31h 0 RWD 958070825
Time triggered firstSTRING 1 32 3ith O RWD
Time triggered last STRING 1 32 3ith O RWD
Condition STRING 1 266 31h O RWD /equipment/chv/variables/chvv[6] < 900
Alarm Class STRING 1 32 3ith O RWD Alarm
Alarm Message STRING 1 80 31h O RWD W c 3 Anode voltage is too low
chaos DIR
Active BOOL 1 4 3lh 0O RWD n
Triggered INT 1 4 3lh 0 RWD O
Type INT 1 4 3ih O RWD 3
Check interval INT 1 4 3ith O RWD 10
Checked last DWORD 1 4 3ih O RWD O
Time triggered firstSTRING 1 32 3ih O RWD
Time triggered last STRING 1 32 3ih O RWD
Condition STRING 1 266 31h 0 RWD /Equipment/B12Y/Variables/B12Y[2] < 3000
Alarm Class STRING 1 32 3ih O RWD Alarm
Alarm Message STRING 1 80 3th 0 RWD CHAOS magnet has tripped.
Classes DIR
Alarm DIR
Write system messageBOOL 1 4 3lth 0 RWD y
Write Elog message BOOL 1 4 3ih O RWD n
System message interINT 1 4 3lth 0 RWD 60
System message last DWORD 1 4 3th 0 RWD O
Execute command STRING 1 256 3ih O RWD
Execute interval INT 1 4 3ih O RWD O
Execute last DWORD 1 4 3ith O RWD O
Stop run BOOL 1 4 31lh O RWD
Warning DIR
Write system messageBOOL 1 4 3lh O RWD y
Write Elog message BOOL 1 4 3lh 0 RWD n
System message interINT 1 4 3lh O RWD 60

This page was generated with the help of DOC++

February 1, 2002 63

http:/ /www. linuxsupportline.com/~doc-+-+

Internal features

Alarm system active Overall Alarm enable flag.

System message last DWORD

Execute command
Execute interval
Execute last
Stop run

STRING
INT
DWORD
BOOL

= e

4 31h
256 31h
4 31h
4 31h
4 31h

Alarms Sub-tree defining each individual alarm condition.

RWD
RWD
RWD
RWD
RWD

(el eNe e Ne)

B O

Classes Sub-tree defining each individual action to be performed by a pre-defined and requested

alarm.

5.2.8

ODB /Script Tree

This branch permits to invoke scripts from the web page. By creating the ODB tree /Script
every entry in that tree will be available on the Web status page with the name of the key. Each
key entry is then composed with a list of ODB field (or links). The first ODB field should be the
executable command followed by as many arguments as you wish to be passed to the script.

[host: :expt:Stopped] /Script>ls

BNMR Hold

Continue

Real

Test

Kill

[host:expt:Stopped]/Script>ls -1r Continue

Key name Type #Val Size Last Opn Mode Value

Continue DIR
cmd STRING 1 128 39h 0 RWD /home/bnmr/perl/continue.pl
Name STRING 1 32 28s O RWD bnmri
hold BOOL 1 4 3lh 0 RWD n

5.2.9

ODB /Elog Tree

This branch decribes the Elog settings used through the Midas web server (mhttpd task) for
setting up the different Elog page display.

[local:midas:S]/Elog>ls -1r
Key name

#Val Size Last Opn Mode Value

Type

This page was generated with the help of DOC++

February 1, 2002 64

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features
Elog DIR
Email STRING 1 64 26h O RWD midas@triumf.ca
Display run number BOOL 1 4 25h O RWD y
Allow delete BOOL 1 4 26h O RWD n
Types STRING 20 32 26h O RWD
[o] Routine
[1] Shift summary
[2] Minor error
[3] Severe error
[4] Fix
[5] Question
[6] Info
[7] Modification
[8] Reply
[o] Alarm
[10] Test
[11] Other
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
Systems STRING 20 32 26h O RWD
[o] General
[1] DAQ
[2] Detector
[3] Electronics
[4] Target
[5] Beamline
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
SMTP host STRING 1 64 26h O RWD trmail.triumf.ca

Email Defines the Email address for Elog reply.

Display run number Allows to disable the run number display in the Elog entries.

Allow delete Flag for permiting the deletion of Elog entry.

Types Pre-defined types displayed when composing an Elog entry. A maximum of 20 types are
available. The list will be terminated by the encounter of the first blank type.

Systems Pre-defined categories displayed when composing an Elog entry. A maximum of 20
types are available. The list will be terminated by the encounter of the first blank type.

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 65

5 Internal features

SMTP host Mail server address for routing the composed Elog message to the destination.

5.3

Hot Link

-> Next History System

It is often desirable to modify hardware parameters like discriminator levels or trigger logic
connected to the frontend computer. Given the according hardware is accessible from the frontend
code, theses parameters are easily controllable when a hot-link ODB is established between the
frontend and the ODB itself.

Control Prograrm

db_set value("/Equipment/Trigner/Settingsdevel 1", 3213

Cnline Database

/Equipment/ Trigner/Settings/
Level1 321 e J—

Level2 123
hot-
link: Front-end
struct {
int level1:
int level2:

} trigger_settings;

Callback routine Erigger_update() -
ropagates
P I:Frlwagnges set(trigger_settings levell),
ta hardware set(trigger_settings level2),
}
db_open_record(” Eguipment/

Create hot-link Trigger/Settings”,
in main() routine &frigger_settings,

trigger_update),

Figure 3: Changes in the ODB get propagated to the hardware by the frontend program.

This page was generated with the help of DOC++
February 1, 2002 66

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

First the parameters have to be defined in the ODB under the Settings tree for the given
equipment. Let’s assume we have two discriminator levels belonging to the trigger electronics,
which should be controllable. Following commands define these levels in the ODB:

[locall]/>cd /Equipment/Trigger/
[local]Trigger>create key Settings
[local]Trigger>cd Settings
[local]Settings>create int levell
[local]Settings>create int level2
[local]lSettings>1ls

The frontend can now map a C structure to these settings. In order to simplify this process,
ODBEJit can be requested to generate a header file containing this C structure. This file is usually
called event.h. It can be generated in the current directory with the ODB command make which
generates in the current directory the header file experim.h:

[locallSettings>make

Now this file can be copied to the frontend directory and included in the frontend source code.
It contains a section with a C structure of the trigger settings and an ASCII representation:

typedef struct {
INT levell;
INT level2;

} TRIGGER_SETTINGS;

#define TRIGGER_SETTINGS_STR(_name) char *_name[] = {\

ll[.]",\

"levell = INT : O",\
"level2 = INT : O",\
llll,\

NULL }

This definition can be used to define a C structure containing the parameters in frontend.c:

#include <experim.h>

TRIGGER_SETTINGS trigger_settings;

A hot-link between the ODB values and the C structure is established in the frontend.init()
routine:

INT frontend_init()

{

HNDLE hDB, hkey;
TRIGGER_SETTINGS_STR(trigger_settings_str);

cm_get_experiment_database(&hDB, NULL);
db_create_record (hDB, O,
"/Equipment/Trigger/Settings",

strcomb(trigger_settings_str));

db_find_key(hDB, O,
"/Equipment/Trigger/Settings", &hkey);

This page was generated with the help of DOC++

February 1, 2002 67

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

if (db_open_record(hDB, hkey,
&trigger_settings,
sizeof (trigger_settings), MODE_READ,
trigger_update) != DB_SUCCESS)
{
cm_msg (MERROR, "frontend_init",
"Cannot open Trigger Settings in ODB");

return -1;
}
return SUCCESS;

}

The db_createrecord() function re-creates the settings sub-tree in the ODB from the ASCII
representation in case it has been corrupted or deleted. The db_open_record() now establishes the
hot-link between the settings in the ODB and the trigger_settings structure. Each time the ODB
settings are modified, the changes are written to the trigger_settings structure and the callback
routine trigger update() is executed afterwards. This routine has the task to set the hardware
according to the settings in the trigger_settings structure.

It may look like:

void trigger_update(INT hDB, INT hkey)
{
printf ("New levels: %d %d",
trigger_settings.levell,
trigger_settings.leve12);

Of course the printf() function should be replaced by a function which accesses the hardware
properly. Modifying the trigger values with ODBEdit can test the whole scheme:

[local]l/>cd /Equipment/Trigger/Settings
[local]Settings>set levell 123
[locallSettings>set level2 456

Immediately after each modification the frontend should display the new values. The settings
can be saved to a file and loaded back later:

[locall/>cd /Equipment/Trigger/Settings
[local]Settings>save settings.odb
[local]Settings>set levell 789
[locallSettings>load settings.odb

The settings can also be modified from any application just by accessing the ODB. Following
listing is a complete user application that modifies the trigger level:

#include <midas.h>

main()

{

HNDLE hDB;
INT level;

cm_connect_experiment("", "Sample", "Test",
NULL) ;
cm_get_experiment_database(&hDB, NULL);

This page was generated with the help of DOC++

February 1, 2002 68

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

level = 321;

db_set_value(hDB, O,
"/Equipment/Trigger/Settings/Levell",
&level, sizeof (INT), 1, TID_INT);

cm_disconnect_experiment () ;

}

The following figure summarizes the involved components:

To make sure a hot-link exists, one can use the ODBEdit command sor (show open records):

[locallSettings>cd /
[locall/>sor
/Equipment/Trigger/Settings open 1 times by ...

5.4

History System

-> Next Alarm System

The history system is an add-on capability build in the data logger (see mlogger task) to record
information in parallel to the data logging. This information is recorded with a time stamp and
saved into ”data base file” like for later retrieval. One set of file is created per day containing all
the requested history events.

The history is working only if the logger is running, but it is not necessary to have any channel
enabled.

The definition of the history event is done through two different means:

1. frontend history event: Each equipment has the capability to generate ”history data” if
the particular history field value is different then zero. The value will reflect the periodicity
of the history logging (see The Equipment structure).

2. ”Virtual History event”: Composed within the Online Database under the specific tree
” /History /Links” (see ODB /History Tree)

Both definition mode takes effects when the data logger gets a ”start run” transition. Any
modification during the run is not applied until the next run is started.

frontend history event As mentioned earlier, each equipment can be enabled to generate his-
tory event based on the periodicity of the history value (in second!). The content if the event
will be completely copied into the history files using the definition of the event as tag names
for every element of the event.

The history variable name for each element of the event is composed following one of the
rules below:

bank event /equipment/<...>/Variables/<bank name>[] is the only reference of the event, the
history name is composed of the bank name follwed by the corresponding index of the
element.

This page was generated with the help of DOC++

February 1, 2002 69

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

bank event /equipment/<...>/Settings/Names <bank _name>[] is present, the history name is
composed of the corresponding name found in the ”Names <bank name>” array. The
size of this array should match the size of the /equipment/<...>/Variables/<bank
name(]>.

[host:chaos:Running]Target>ls -1 -r

Key name Type #Val Size Last Opn Mode Value
Target DIR
settings DIR
Names TGT_ STRING 7 32 10h O RWD

[o] Time
[1]1 Cryostat vacuum
[2] Heat Pipe pressure
[3] Target pressure
[4] Target temperature
[5] Shield temperature
[6]1 Diode temperature

Common DIR

Variables DIR

TGT_ FLOAT 7 4 10s O RWD

[o] 114059
[1]1 4.661
[2] 23.16
[3] -0.498
[4] 22.888
[5] 82.099
[e] 40

Statistics DIR

fixed event The names of the individual element under /equipment/<...>/variables/ will be used
for the history name composition.

fixed event with array If the /equipment/<...>/Settings/Names][] exists, each element of the array will be
referenced using the corresponding name of the /Settings/Names][] array.

ODB history event

5.5

Alarm System

-> Next Slow Control System

The alarm system is built in and part of the main experiment scheduler. This means no
separate task is necessary to beneficate from it, but this feature is active during ONLINE mode
ONLY. Alarm setup and activation is done through the Online DataBase. Alarm system includes
several other features such as: sequencing control of the experiment. The alarm capabilities are:

This page was generated with the help of DOC++

February 1, 2002 70

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

Alarm setting on any ODB variables against threshold parameter.

Alarm check frequency

Alarm trigger frequency

Customizable alarm scheme, under this scheme multiple choice of alarm type can be selected.

e Program control on run transition.

Beside the setup through ODBEJit, the Alarm can also be setup through the Midas web page..

| MIDAS experiment "bnmr2" Sat Aug 5 11:09:49 2000

| Reset all alarms | Alarms on/off | Status |

| Evaluated alarms

| Alarm | State |First triggered ‘ Class | Condition |Current value
|M |Disabled| - ‘Mﬂ |;’Runinf0;’Run number > 100 | 30327
|RF trip |Disabled| - ‘@ |fequipmentfinf0 odb/variables/RF state = 1 | 0
’m-| - ‘@ |f equipment/info odb/variables/Fluor monitor counts < 0| 0

| Program alarms

| Alarm | State |First triggered‘Class | Condition

| Internal alarms

| Alarm | State |First triggered‘Class | Condition/Message

Figure 4: Midas Web Alarm setting display.

 MIDAS experiment "trinat” | Sat Aug 5 11:18:06 2000
‘ Find | Create | Delete | Alarms | Programs | Status | Help |
‘ Create Elog from this page |

| / Programs / Nova 014019 /

| Key | Value

|Aut0 start n

|Aut0 stop n

|Aut0 restart |g

|Required |g

|Staﬂ command |j empty)

|Alarm Class |j empty)

(Checked last 1965499475 (0x398C5A53)
|Alarm count |0 {0x0)

‘Watchdog timeout 110000 (0x2710)

Figure 5: Midas Web Alarm Program setting display.

This page was generated with the help of DOC++

February 1, 2002 71

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

| MIDAS experiment "trinat" | Sat Aug 5 11:17:30 2000

‘ Alarms | Status |

| Program |lem'ng on host |Alarm class |Autorestart

T
TRINAT FE | codag0l = - | | StopTRINAT FE_|
MStatus _‘ - ‘ No ‘ Stop MStatus |
| |
| |

Stop ODBECit |

Logger _‘ - No Stop Logger |
Nova 014019 midis0l - No Stop Nova_014019 |

Figure 6: Midas Web Alarm Program status display.

5.6

Slow Control System

-> Next Electronic Logbook

Instead of talking directly to each other, frontends and control programs exchange information
through the ODB. Each slow control equipment gets a corresponding ODB tree under /Equipment.
This tree contains variables needed to control the equipment as well as variables measured by the
equipment. In case of a high voltage equipment this is a Demand array with contains voltages to
be set, a Measured array which contains read back voltages and a Current array which contains
the current drawn from each channel. To change the voltage of a channel, a control program writes
to the Demand array the desired value. This array is connected to the high voltage frontend via
a ODB hot-link. Each time it gets modified, the frontend receives a notification and sets the
new value. In the other direction the frontend continuously reads the voltage and current values
from all channels and updates the according ODB arrays if there has been a significant change.
This design has a possible inconvenience due to fact that ODB is the key element of that control.
Any failure or corruption of the database can results in wrong driver control. Therefore it is not
recommended to use this system to control systems that need redundancy for safety purposes. On
the other hand this system has several advantages:

e The control program does not need any knowledge of the frontends, it only talks to the ODB.
e The control variables only exist at one place that guarantees consistency between all clients.

e Basic control can be done through ODBEdit without the need of a special control program.

A special control program can be tested without having a frontend running.

In case of n frontends and m control programs, only n+m network connections are needed
instead of n*m connection for point-to-point connections.

Since all slow control values are contained in the ODB, they get automatically dumped to the
logging channels. The slow control frontends use the same framework as the normal frontends and
behave similar in many respects. They also create periodic events that contain the slow control
variables and are logged together with trigger and scaler events. The only difference is that a

This page was generated with the help of DOC++

February 1, 2002 72

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

routine is called periodically from the framework that has the task to read channels and to update
the ODB. To access slow control hardware, a two-layer driver concept is used. The upper layer
is a ”class driver”, which establishes the connection to the ODB variables and contains high level
functionality like channel limits, ramping etc. It uses a ”device driver” to access the channels.
These drivers implement only very simple commands like ”set channel” and ”"read channel”. The
device drivers themselves can use bus drivers like RS232 or GPIB to control the actual device.

QDB Class Driver
hiat- link: FRamping
Demand values Channel limits
Meazured values Trip reset
DEVICEDIMVEN [oo
=FPIiB
-k Set channel CAMAL
— Read channel B Hardware

Figure 7: Class driver and Device driver in the slow control system.

The separation into class and device drivers has the advantage that it is very easy to add new
devices, because only the simple device driver needs to be written. All higher functionality is
inherited from the class driver. he device driver can implement richer functionality, depending on
the hardware. For some high voltage devices there is a current read-back for example. This is
usually reflected by additional variables in the ODB, i.e. a Current array. Frontend equipment
uses exactly one class driver, but a class driver can use more than one device driver. This makes
it possible to control several high voltage devices for example with one frontend in one equipment.
The number of channels for each device driver is defined in the slow control frontend. Several
equipment with different class drivers can be defined in a single frontend.

Key name Type #Val Size Last Opn Mode Value
Epics DIR
Settings DIR
Channels DIR
Epics INT 1 4 26h 0O RWD 3
Devices DIR
Epics DIR
Channel name STRING 10 32 256h O RWD
[ol GPS:VAR1
[1] GPS:VAR2
[2] GPS:VAR3
Names STRING 10 32 17h 1 RWD
[o] Current
[11 Voltage
[2] Watchdog
Update Threshold MeasureFLOAT 10 4 17h 0 RWD
[o] 2

This page was generated with the help of DOC++

February 1, 2002 73

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

[1] 2
[2] 2
Common DIR
Event ID WORD 1 2 17h O RWD 3
Trigger mask WORD 1 2 17h O RWD O
Buffer STRING 1 32 17h O RWD SYSTEM
Type INT 1 4 17h O RWD 4
Source INT 1 4 17h O RWD O
Format STRING 1 8 17h O RWD FIXED
Enabled BOOL 1 4 17h O RWD y
Read on INT 1 4 17h O RWD 121
Period INT 1 4 17h O RWD 60000
Event limit DOUBLE 1 8 17h O RWD O
Num subevents DWORD 1 4 17h O RWD O
Log history INT 1 4 17h O RWD 1
Frontend host STRING 1 32 17h O RWD hostname
Frontend name STRING 1 32 17h 0 RWD Epics
Frontend file name STRING 1 2566 17h O RWD feepic.c
Variables DIR
Demand FLOAT 10 4 Os 1 RWD
[o] 1.56
[1] 120
[2] 87
Measured FLOAT 10 4 2s 0 RWD
[o] 1.56
[1] 120
[2] 87
Statistics DIR
Events sent DOUBLE 1 8 17h O RWDE 26
Events per sec. DOUBLE 1 8 17h 0 RWDE O
kBytes per sec. DOUBLE 1 8 17h O RWDE O
5.7

Electronic Logbook

The Electronic logbook is an alternative way of recording experiment information. This is imple-
mented through the Midas web server mhttpd task. The definition of the options are implemented
within the ODB data base under ODB /Elog Tree.

5.8

Log file

-> Utilities

Midas provides a general log file midas.log for recording system and user messages across the
different components of the data acquisition clients. The location of this file is dependent on the
mode of installation of the system.

This page was generated with the help of DOC++

February 1, 2002 74

http:/ /www. linuxsupportline.com/~doc-+-+

5 Internal features

hout /ODB /Logger Tree In this case the location is defined by either the MIDAS_DIR environment (see Envi-
ronment variables) or the definition of the experiment in the exptab file (see Defining an
Experiment). In both case the log file will be in the experiment specific directory.

with /Logger Tree The midas.log will be sitting into the defined directory specified by Data Dir.

midas.log file will contains system and user messages generated by any application connected
to the given experiment.

The Message Macros definition provides a list of possible type of messages.

Fri Mar 24 10:48:40 2000 [CHAOS] Run 8362 started

Fri Mar 24 10:48:40 2000 [Logger] Run #8362 started

Fri Mar 24 10:55:04 2000 [Lazy_Tape] cni-043[10] (cp:383.6s) /dev/nst0/run08360.ybs 849.896MB file NEW
Fri Mar 24 11:24:03 2000 [MStatus] Program MStatus on host umelba started

Fri Mar 24 11:24:03 2000 [MStatus] Program MStatus on host umelba stopped

Fri Mar 24 11:27:02 2000 [Logger] stopping run after having received 1200000 events

Fri Mar 24 11:27:03 2000 [CHAOS] Run 8362 stopped

Fri Mar 24 11:27:03 2000 [SUSIYBOS] saving info in run log

Fri Mar 24 11:27:03 2000 [Logger] Run #8362 stopped

Fri Mar 24 11:27:13 2000 [Logger] starting new run

Fri Mar 24 11:27:14 2000 [CHAOS] Run 8363 started

Fri Mar 24 11:27:14 2000 [CHAOS] odb_access_file -I- /Equipment/kos_trigger/Dump not found

Fri Mar 24 11:27:14 2000 [Logger] Run #8363 started

Fri Mar 24 11:33:47 2000 [Lazy_Tapel cni-043[11] (cp:391.8s) /dev/nst0/run08361.ybs 850.209MB file NEW
Fri Mar 24 11:42:35 2000 [CHAOS] Run 8363 stopped

Fri Mar 24 11:42:40 2000 [SUSIYBOS] saving info in run log

Fri Mar 24 11:42:41 2000 [ODBEdit] Run #8363 stopped

Fri Mar 24 12:19:57 2000 [MChart] client [umelba.Triumf.CA]MChart failed watchdog test after 10 sec
Fri Mar 24 12:19:57 2000 [MChart] Program MChart on host koslx0O stopped

This page was generated with the help of DOC++

February 1, 2002 75

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities
6
Utilities
The Midas applications.

Names
6.1 odbedit task Online DataBase Editor. 77
6.2 mstat task Midas Status display 79
6.3 analyzer task online / offline analyzer 80
6.4 mlogger task Multi channel Data logger and history data

collector. 93
6.5 lazylogger task Multi channel background data copier. 93
6.6 mdump task Event display utility. 97
6.7 mevb task Midas Event Builder. 99
6.8 mspeaker, mlxspeaker tasks

Midas message speech synthesizer. 107
6.9 mcnaf task CAMAC utility.cccoi.... 108
6.10 mhttpd task Midas Web server.ccccouuu... 109
6.11 elog task Electronic LogBook utility. 126
6.12 mbhist task History data utility. 128
6.13 mchart task ODB data for stripchart uwtility. 130
6.14 mtape task Tape utility. ...t 133
6.15 dio task Frontend or menaf Direct 10 to CAMAC

launcher. iiiiiiio... 134
6.16 stripchart.tcl Tcl/Tk history/ODB data stripchart dis-

play. ... 134
6.17 hvedit task HYV or Slow control Windows application

editor. .o 136

The Midas system provides several off-the-shelf programs to control, monitor, debug the data
aquisition system. Starting with the main utility (odbedit) which provide access to the Online
data base and run control.

6.1

odbedit task

Online DataBase Editor.

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002

76

6 Utilities

odbedit referes to the Online DataBase Editor. This is the main application to interact with the
different components of the Midas system.

e Arguments

-h : help.

-h hostname :Specifies host to connect to. Must be a valid IP host name. This option supersedes
the MIDAS_SERVER_HOST environment variable.

-e exptname :Specifies the experiment to connect to. This option supersedes the MI-
DAS_EXPT_NAME environment variable.

-c command :Perform a single command. Can be used to perform operations in script files.
-¢ @commandFile :Perform commands in sequence found in the commandFile.

-s size : size in byte (for creation). Specify the size of the ODB file to be created when no
share file is present in the experiment directory (default 128KB).

-d ODB tree :Specify the initial entry ODB path to go to.

e Usage ODBEJit is the MIDAS run control program. It has a simple command line in-
terface with command line editing similar to the UNIX tcsh shell. Following edit keys are
implemented:

Backspace Erase character left from cursor
Delete/Ctrl-D Erase character under cursor
Ctrl-W/Ctrl-U Erase current line
Ctrl-K Erase line from cursor to end
Left arrow/Ctrl-B Move cursor left
Right arrow/Ctrl-F Move cursor right
Home/Ctrl-A Move cursor to beginning of line
End/Ctrl-E Move cursor to end of line
Up arrow/Ctrl-P Recall previous command
Down arrow/Ctrl-N Recall next command
Ctrl-F Find most recent command which starts with current line
Tab/Ctrl-I Complete directory. The command ls /Sy<tab> yields to 1s /System.
ODBEJdit treats the hierarchical online database very much like a file system. Most com-

mands are similar to UNIX file commands like 1s, c¢d, chmod, In etc. The help command
displays a short description of all commands.

[local:midas:Stopped]/>help
Database commands ([] are options, <> are placeholders):

alarm - reset all alarms

cd <dir> - change current directory

chat — enter chat mode

chmod <mode> <key> - change access mode of a key
l=read | 2=write | 4=delete

cleanup - delete hanging clients

copy <src> <dest> - copy a subtree to a new location

create <type> <key> - create a key of a certain type

create <type> <key>[n] - create an array of size [n]

del/rm [-1] [-f] <key> - delete a key and its subkeys

This page was generated with the help of DOC++

February 1, 2002 7

http:/ /www. linuxsupportline.com/~doc-+-+

Utilities

-1
-f
exec <key>/<cmd>
find <pattern>
help/? [command]
hi [analyzer] [id]
1n <source> <linkname>
load <file>
1s/dir [-lhvrp] [<pat>]
-1
-h
-v
-r
P
make [analyzer name]
mem
mkdir <subdir>

follow links
force deletion without asking
- execute shell command (stored in key) on server
- find a key with wildcard pattern
- print this help [for a specific command]
- tell analyzer to clear histos
- create a link to <source> key
- load database from .0DB file at current position
- show database entries which match pattern
detailed info
hex format
only value
show database entries recursively
pause between screens
- create experim.h
- show memeory usage
- make new <subdir>

move <key> [top/bottom/[n]] - move key to position in keylist

msg [user] <msg>
old

passwd

pause

pwd

resume

rename <old> <new>
rewind [channell
save [-c -s] <file>

set <key> <value>

set <key>[i] <value>
set <key>[*] <value>
set <key>[i..j] <value>
scl [-w]

shutdown <client>/all
sor

start [number]

stop

trunc <key> <index>
ver

webpasswd

wait <key>

quit/exit

e Examples
>odbedit -s 512000

>odbedit -c stop
>odbedit

- compose user message
- display old messages
— change MIDAS password
- pause current run
- show current directory
- resume current run
- rename key
- rewind tapes in logger
- save database at current position
in ASCII format
as a C structure
as a #define’d string
- set the value of a key
- set the value of index i
- set the value of all indices of a key
- set the value of all indices i..j
- show all active clients [with watchdog infol
- shutdown individual or all clients
- show open records in current subtree
- start a run [with a specific number]
- stop current run
- truncate key to [index] values
- show MIDAS library version
- change WWW password for mhttpd
- wait for key to get modified
- exit

[hostxxx:exptxxx:Running]/> 1ls /equipment/trigger

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002

78

6 Utilities

6.2

mstat task

Midas Status display

mstat is a simple ASCII status display. It presents in a compact form the most valuable infor-
mation of the current condition of the Midas Acquisition system. The display is composed at the
most of 5 sections depending on the current status of the experiment. The sections displayed in
order from top to bottom refer to:

1. Run information.
2. Equipment listing and statistics. if any frontend is active.
Logger information and statistics if mlogger is active.

Lazylogger status if lazylogger is active.

A S

Client listing.

e Arguments

-h : help
-h hostname : host name (see odbedit task)

-e exptname : experiment name (see odbedit task)

” '7)

-1 : loop. Forces mstat to remain in a display loop. Enter to terminate the command.

-w time : refresh rate in second. Specifies the delay in second before refreshing the screen with
up to date information. Default: 5 seconds. Has to be used in conjunction with -1
switch. Enter "R” to refresh screen on next update.

e Usage
>mstat -1
-v1.8.0- MIDAS status page Mon Apr 3 11:52:52 2000-
Experiment:chaos Run#:8699 State:Running Run time :00:11:34

Start time:Mon Apr 3 11:41:18 2000

FE Equip. Node Event Taken Event Rate[/s] Data Rate[Kb/s]

B12Y pcch02 67 0.0 0.0

CUM_Scaler vwchaos 23 0.2 0.2

CHV pcch02 68 0.0 0.0

KOS_Scalers vwchaos 330 0.4 0.6

KOS_Trigger vwchaos 434226 652.4 408.3

KOS_File vwchaos 0 0.0 0.0

Target pcch02 66 0.0 0.0

Logger Data dir: /scr0/spring2000 Message File: midas.log

Chan. Active Type Filename Events Taken KBytes Taken
0 Yes Disk run08699.ybs 434206 4.24e+06

Lazy Label Progress File name #files Total

cni-53 100[%] run08696.ybs 15 44.3[%]

This page was generated with the help of DOC++

February 1, 2002 79

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

Clients: MStatus/koslx0 Logger/kos1x0 Lazy_Tape/kos1x0
CHV/pcch02 MChart1/umelba O0DBEdit/kos1x0
CHAOS/vwchaos ecl/koslx0 Speaker/kos1x0
MChart/umelba targetFE/pcch02 HV_MONITOR/umelba
SUSIYB0S/kos1x0 History/kosal2 MStatusl/dasdevpc

*— - A *

6.3

analyzer task

online / offline analyzer

Names

6.3.1 The MIDAS Analyzer 81
6.3.2 Multi Stage Conceptcooiiiiiiiiiiiiiiiiiiian.. 82
6.3.3 Analyzer parameters il 83
6.3.4 ODB parameters for Analyzer 83
6.3.5 Writing the Code i 87
6.3.6 Online usage .o 89
6.3.7 Offline usage = .. 91

analyzer is the main online / offline event analysis application. analyzer uses fully the ODB
capabilities as all the analyzer parameters are dynamically controllable from the Online Database
editor odbedit task.

e Arguments

-h : help
-h hostname : host name (see odbedit task)
-e exptname : experiment name (see odbedit task)
-D : start program as a daemon (UNIX only).

-i <filenamel> <filename2> : Input file name. May contain a ’%05d’ to be replaced by the run number. Up to ten

input files can be specified in one ”-i” statement.

-o <filename> : OQutput file name. Extension may be .mid (MIDAS binary), .asc (ASCII) or .rz
(HBOOK). If the name contains a *%05d’, one output file is generated for each run.

-r <range> : Range of run numbers to analyzer like ”-r 120 125” to analyze runs 120 to 125
(inclusive). The ”-r” flag must be used with a '%05d’ in the input file name.

-n <count> : Analyze only ”count” events.
-n <first> <last> : Analyze only events from "first” to ”last”.

-n <first> <last> <n> : Analyze every n-th event from "first” to ”last”.

This page was generated with the help of DOC++

February 1, 2002 80

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

-f : Filter events. Write original events to output file only if analyzer accepts them
(doesn’t return ANA_SKIP).

-c <filenamel> <filename2> : Configuration file name(s). May contain a *%05d’ to be replaced by the run number.
Up to ten files can be specified in one ”-¢” statement.

-p <param=value> : Set individual parameters to a specific value. Overrides any setting in configuration
files

-w : Produce row-wise N-tuples in outpur .rz file. By default, column-wise N-tuples are
used.

-v : Verbose output.

-d : Debug flag when started the analyzer fron a debugger. Prevents the system to kill
the analyzer when the debugger stops at a breakpoint

-q : Quiet flag. If set, don’t display run progress in offline mode.
-1 : If set, don’t load histos from last.rz when running online.
-L : HBOOK LREC size. Default is 8190.

-P <ODB tree> Protect an ODB subtree from being overwritten with the online data when ODB gets
loaded from .mid.

e Usage

>analyzer

>analyzer -D

>analyzer -i run00023.mid -o run00023.rz -w
>analyzer -i run%05d.mid -o runall.rz -r 23 75 -w

6.3.1

The MIDAS Analyzer

->Multi Stage Concept

Users can write their own analyzer from scratch or use the standard MIDAS analyzer framework
which uses the HBOOK package for histogramming. Using the MIDAS analyzer framework has
following advantages: Events are received automatically, only a user routine has to be written
to process the events. This concept is similar to the frontend. The analyzer is structured into
”stages”, where each stage analyzes a part of the event and adds some calculated data to it,
which can be read by later stages. This simplifies the design of complex analyzers. The analyzer
framework can receive events from a MIDAS buffer (online analysis) or from a file (off-line-analysis)
without recompilation. The analyzer framework can produce output files which may contain a
combination of raw and analyzed data. Output files can be in different formats like HBOOK RZ
files which can be directly analyzed with PAW. An ODB dump contained in a data file can be
retrieved and copied to the current ODB. This ensures that the same configuration values are
used online and off-line. Additionally, parameters can be overloaded from off-line configuration
files. Several files can be analyzed off-line each having its own configuration file. While HBOOK
histograms have to be booked and filled manually from the user code, N-tuples can be booked
automatically from one or more banks. This works also online where ”live” N-tuples can be used
to monitor an experiment with PAW. The following paragraphs explain these features in more
detail and show how to use them.

This page was generated with the help of DOC++

February 1, 2002 81

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

6.3.2

Multi Stage Concept

->Analyzer parameters

In order to make data analysis more flexible, a multi-stage concept has been chosen for the
analyzer. A raw event is passed through several stages in the analyzer, where each stage has a
specific task. The stages read part of the event, analyze it and can add the results of the analysis
back to the event. Therefore each stage in the chain can read all results from previous stages.
The first stages in the chain typically deal with data calibration, while the last stages contain
the code which produces ”physical” results like particle energies etc. The multi stage concept
allows collaborations of people to use standard modules for the calibration stages which ensures
that all members deal with the identical calibrated data, while the last stages can be modified by
individuals to look at different aspects of the data. The stage system makes use of the MIDAS bank
system. Each stage can read existing banks from an event and add more banks with calculated
data. Following picture gives an example of an analyzer consisting of three stages where the first
two stages make an ADC and a MWPC calibration, respectively. They add a ”Calibrated ADC”
bank and a "MWPC” bank which are used by the third stage which calculates angles between
particles:

raw event fom fon-end
an an an Sta ges

\’1 ADC calibraton | 1

[ADC bank | TOC bank [FCO% bank | Cal. ADC bank |

WINPT calibration | 2

[ADC bank | TOC bank [PCO% bank | Cal. ADC bank | hAul'P C bank |

[Angle cakulations | T 3

[ADCbank | TOC bank | PCO% bank | Cal. ADC bank | bin/P C bank | Angle bank: |

Figure 8: Three stage analyzer.

Example of a three stage analyzer Since data is contained in MIDAS banks, the system knows
how to interpret the data. N-tuples can be booked automatically from any bank with a simple
switch in the ODB. The user code for each stage is contained in a "module”. Each module has
a begin-of-run, end-of-run and an event routine. The BOR routine is typically used to book
histograms, the EOR routine can do peak fitting etc. The event routine is called for each event
that is received online or off-line.

This page was generated with the help of DOC++

February 1, 2002 82

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

6.3.3

Analyzer parameters

->ODB parameters for Analyzer

Each analyzer module can contain a set of parameters to control the behavior of the module
or as configuration and calibration data. These parameters are kept in the ODB under /An-
alyzer /Parameters/<module name> and mapped automatically to C structures in the analyzer
modules. Changing these values in the ODB can therefore control the analyzer. In order to keep
the ODB variables and the C structure definitions matched, the ODBEdit command make gen-
erates the file experim.h which contains C structures for all analyzer parameters. If this file is
included in all analyzer source code files, the parameters can be accessed under the name <module
name>_param.

6.3.4

ODB parameters for Analyzer

->Writing the Code

When the analyzer is started for the first time, it will create a new tree in ODB. The default
structure is composed of the following elements.

[host:expt:S]/Analyzer>ls -1

Key name Type #Val Size Last Opn Mode Value
Parameters DIR

Output DIR

Book N-tuples BOOL 1 4 im O RWD ¥y
Bank switches DIR

Module switches DIR

0DB Load BOOL 1 4 19h 0 RWD n
Trigger DIR

Scaler DIR

Analyzer /Parameters This directory contains a default set of parameters which are passed to the modules. See
the correspondence in the module.

[host:expt:S]/Analyzer>ls -1lr Parameters

Key name Type #Val Size Last Opn Mode Value
Parameters DIR
ADC calibration DIR
Pedestal INT 8 4 43m O RWD
[0] 174
[1] 194
[2] 176
[3] 182
[4] 185
[5] 215

This page was generated with the help of DOC++

February 1, 2002 83

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

[6] 202
[7] 202
Software Gain FLOAT 8 4 43m O RWD
[0] 1
[1] 1
[2] 1
[3] 1
[4] 1
[5] 1
[6] 1
[7] 1
Histo threshold DOUBLE 1 8 43m O RWD 20
ADC summing DIR
ADC threshold FLOAT 1 4 43m O RWD b5
Global DIR
ADC Threshold FLOAT 1 4 43m O RWD 5
---> file adccalib.c
#include "experim.h"
ANA_MODULE adc_calib_module = {
"ADC calibration", // module name
"Stefan Ritt", // author
adc_calib, // event routine
adc_calib_bor, // BOR routine
adc_calib_eor, // EOR routine
adc_calib_init, // init routine
NULL, // exit routine
&adccalib_param, // parameter structure
sizeof (adccalib_param), // structure size
adc_calibration_param_str, // initial parameters

};

// subtract pedestal
for (i=0 ; i<n_adc ; i++)
cadc[i] = (float) ((double)pdatali] - adccalib_param.pedestal[i] + 0.5);

// apply software gain calibration
for (i=0 ; i<n_adc ; i++)
cadc[i] *= adccalib_param.software_gain[i];

// £ill ADC histos if above threshold
for (i=0 ; i<n_adc ; i++)
if (cadc[i] > (float) adccalib_param.histo_threshold)
HF1(ADCCALIB_ID_BASE+i, cadc[il, 1.f);

If more parameters are necessary, perform the following procedure:

1. modify/add new parameters in the current ODB.

[host:expt:S]ADC calibration>set Pedestal[9] 3
[host:expt:S]ADC calibration>set "Software Gain[9]" 3
[host:expt:S]ADC calibration>create double "Upper threshold"
[host:expt:S]ADC calibration>set "Upper threshold" 400
[host:expt:S]ADC calibration>ls -1r

This page was generated with the help of DOC++

February 1, 2002 84

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

Key name Type #Val Size Last Opn Mode Value
ADC calibration DIR
Pedestal INT 10 4 2m O RWD
[o] 174
[1] 194
[2] 176
[3] 182
[4] 185
[5] 215
[e] 202
[7] 202
[8] 0
[9] 3
Software Gain FLOAT 10 4 2m O RWD
[o] 1
[1] 1
[2] 1
[3] 1
[4] 1
[5] 1
[e] 1
[7] 1
[8] 0
o] 0
Histo threshold DOUBLE 1 8 53m O RWD 20
Upper threshold DOUBLE 1 4 3s O RWD 400

2. Generate experim.h

[host:expt:S]ADC calibration>make
"experim.h" has been written to /home/midas/online

3. Update the module with the new parameters.
---> adccalib.c
fill ADC histos if above threshold
for (i=0 ; i<n_adc ; i++)
if ((cadc[i] > (float) adccalib_param.histo_threshold)

&& (cadc[i] < (float) adccalib_param.upper_threshold))
HF1(ADCCALIB_ID_BASE+i, cadc[il, 1.f);

4. rebuild the analyzer.

In the case global parameter is necessary for several modules, start by doing the step 1 & 2
from the enumeration above and carry on with the following procedure below:

1. Declare the parameter global in analyzer.c

// ODB structures

GLOBAL_PARAM global_param;

2. Update ODB structure and open record for that parameter (hot link).

---> analyzer.c

This page was generated with the help of DOC++

February 1, 2002 85

http:/ /www. linuxsupportline.com/~doc-+-+

Utilities

sprintf (str, "/%s/Parameters/Global", analyzer_name);
db_create_record(hDB, 0, str, strcomb(global_param_str));
db_find_key(hDB, 0, str, &hKey);
if (db_open_record(hDB, hKey, &global_param
, sizeof (global_param), MODE_READ, NULL, NULL) != DB_SUCCESS) {
cm_msg(MERROR, "analyzer_init", "Cannot open \"/%s\" tree in ODB", str);
return 0;

}

. Declare the parameter extern in the required module

—---> adccalib.c

extern GLOBAL_PARAM global_param;

Analyzer/Output Defines general analyzer behaviour and output data format.

[host:expt:S]0utput>ls -1

Key name Type #Val Size Last Opn Mode Value

Filename STRING 1 266 6m O RWD run)%05d.asc

RWNT BOOL 1 4 6m 0 RWD n

Histo Dump BOOL 1 4 6m O RWD n

Histo Dump Filename STRING 1 266 6m O RWD his%05d.rz

Clear histos BOOL 1 4 6m O RWD y

Last Histo Filename STRING 1 266 6m O RWD 1last.rz

Events to 0DB BOOL 1 4 6m O RWD n

Global Memory Name STRING 1 8 6m O RWD ONLN
Output/Filename Analyzer data output ?7?? what are the other options?

Output/RWNT
Output/Histo Dump
Output/Histo Dump Filename

Output/Clear histos
Output/Last Histo Filename

Output/Events to ODB
Dutput/Global Memory Name

Raw Wise N-Tuple 77?7 but for online CW only?
Enable the creation of a histogram save-set.

File name template for the histo dump. Remark: PAW++ browse the HBOOK
automatically and therefore this field can be set to his%05d.hbook.

Enable the clearing of all histos at the begining of each run.

Default name for the latest NTuple+histo file name. This file is read when the analyzer
is restarted. Remark: that if the booking of the histograms has been changed in the
analyzer, it is strongly suggested to remove ”last.rz” file in order to prevent memory
misalignment when restarting the analyzer.

Enable the copy of the event to the ODB for debugging purpose.

Shared Memory name to allows PAW to attached to the N-Tuples and histograms.

Analyzer/Book N-tuples Enable the N-Tuple rebooking.

Analyzer /Bank switches Enable individual banks for N-Tuples generation.

[local:midas:S]/Analyzer>ls "Bank switches" -1

Key name Type #Val Size Last Opn Mode Value
ADCO DWORD 1 4 ith 0 RWD O
TDCO DWORD 1 4 ith 0 RWD O
CADC DWORD 1 4 ith 0 RWD O
ASUM DWORD 1 4 ith 0 RWD O
SCLR DWORD 1 4 ith 0 RWD O
ACUM DWORD 1 4 ith 0 RWD O

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 86

6 Utilities

Module switches Enable individual modules.

[local:midas:S]/Analyzer>ls "module switches" -1

Key name Type #Val Size Last Opn Mode Value
ADC calibration BOOL 1 4 ith 0 RWD ¥y
ADC summing BOOL 1 4 ith 0 RWD y
Scaler accumulation BOOL 1 4 ith 0 RWD ¥y

Analyzer/ODB Load Enable the extraction of the ODB dump from the data file and the overwriting of the current
ODB. This option is valid only during offline analysis. Remark: While taking data online
(/Runinfo/Online mode = 1), if a offline analyzer is started it will overwite the online ODB
even if the ”ODB load” is disabled. Make sure you create a different experiment allocated
strictly to the offline analyzer. The Output dir defines condition for the upcomming run.

Analyzer /Trigger Default analyzer module.

Analyzer/Scaler Default analyzer module.

6.3.5

Writing the Code

Names
6.3.5.1 analyzer.c e 87
6.3.5.2 <module.c> 88

->Online usage

An example analyzer is contained in the examples/experiment directory of the MIDAS distri-
bution. The MIDAS analyzer framework mana.c is compiled and linked together with the main
analyzer file analyzer.c which contains a list of analyzer modules. The source code files for the
individual modules are adccalib.c, adcsum.c and scaler.c.

6.3.5.1

analyzer.c

The file analyzer.c contains the PAW common section which is defined with
PAWC_DEFINE(8000000);

This defines a section of 8 megabytes or 2 megawords. In case many histograms are booked in
the user code, this value probably has to be increased in order not to crash HBOOK. If the analyzer
runs online, the section is kept in shared memory. In case the operating system only supports
a smaller amount of shared memory, this value has to be decreased. Next, the file contains the
analyzer name

char *analyzer name = ” Analyzer”;

This page was generated with the help of DOC++

February 1, 2002 87

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

under which the analyzer appears in the ODB (via the ODBEdit command scl). This also
determines the analyzer root tree name as /Analyzer. In case several analyzers are running si-
multaneously (in case of distributed analysis on different machines for example), they have to
use different names like Analyzerl and Analyzer2 which then creates two separate ODB trees
/Analyzerl and /Analyzer2 which is necessary to control the analyzers individually. Following
structures are then defined in analyzer.c: runinfo, global param, exp_param and trigger settings.
They correspond to the ODB trees /Runinfo, /Analyzer/Parameters/Global, /Experiment/Run
parameters and /Equipment/Trigger/Settings, respectively. The mapping is done in the ana-
lyzer_init() routine. Any analyzer module (via an extern statement) can use the contents of these
structures. If the experiment parameters contain an flag to indicate the run type for example,
the analyzer can analyze calibration and data runs differently. The module declaration section in
analyzer.c defines two ”chains” of modules, one for trigger events and one for scaler events. The
framework calls these according to their order in these lists. The modules of type ANA_MODULE
are defined in their source code file. The enabled flag for each module is copied to the ODB
under /Analyzer/Module switches. By setting this flag zero in the ODB, modules can be disabled
temporarily. Next, all banks have to be defined. This is necessary because the framework auto-
matically books N-tuples for all banks at startup before any event is received. Online banks which
come from the frontend are first defined, then banks created by the analyzer:

// online banks
{ "ADCO", TID_DWORD, N_ADC, NULL },
{ "TDCO", TID_DWORD, N_TDC, NULL },

// calculated banks

{ "CADC", TID_FLOAT, N_ADC, NULL },

{ "ASUM", TID_STRUCT, sizeof (ASUM_BANK),
asum_bank_str },

The first entry is the bank name, the second the bank type. The type has to match the type
which is created by the frontend. The type TID_STRUCT is a special bank type. These banks
have a fixed length which matches a C structure. This is useful when an analyzer wants to access
named variables inside a bank like asum_bank.sum. The third entry is the size of the bank in
bytes in case of structured banks or the maximum number of items (not bytes!) in case of variable
length banks. The last entry is the ASCII representation of the bank in case of structured banks.
This is used to create the bank on startup under /Equipment/Trigger/Variables/<bank name>.

The next section in analyzer.c defines the ANALYZE_REQUEST list. This determines which
events are received and which routines are called to analyze these events. A request can either
contain an ”analyzer routine” which is called to analyze the event or a "module list” which
has been defined above. In the latter case all modules are called for each event. The requests
are copied to the ODB under /Analyzer/<equipment name>/Common. Statistics like number of
analyzed events is written under /Analyzer/<equipment name>/Statistics. This scheme is very
similar to the frontend Common and Statistics tree under /Equipment/<equipment name>/. The
last entry of the analyzer request determines the HBOOK buffer size for online N-tuples. The
analyzer_init() and analyzer_exit() routines are called when the analyzer starts or exits, while the
ana_begin_of run() and ana_end of run() are called at the beginning and end of each run. The
ana_end_of_run() routine in the example code writes a run log file runlog.txt which contains the
current time, run number, run start time and number of received events.

6.3.5.2

<module.c>

This page was generated with the help of DOC++

February 1, 2002 88

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

Each module source code file defines itself in a ANA_MODULE structure which contains the
module name, author, callback routines for events and run transitions, and a reference to the
analyzer parameters for this module. In the BOR callback usually histograms are defined. The
event routine reads banks from the event via bk_locate(), does its calculations, fills histograms and
then creates calculated banks with bk_create()/bk_close() similar like the frontend. If a module
returns 0 instead of SUCCESS, the event is not written to the output. This way event filtering
might be implemented. To create new calculated values and parameters for an analyzer module,
they first have to be created in the ODB. To create the calculated value new_sum in bank ASUM
for module ADC summing, one enters in ODBEdit:

[locall/>cd /Equipment/Trigger/Variables/ASUM
[local]ASUM>cr float "New sum"

The parameter offset for module ADC summing is created with:

[local]/>cd /Analyzer/Parameters/ADC summing
[local]ADC summing>cr float Offset

The ODB command make now creates experim.h with these structures:

typedef struct {

float sum;
float new_sum;
} ASUM_BANK;

typedef struct {
float adc_threshold;
float offset

} ADC_SUMMING_PARAM;

The ASCII representations of these structures in event.h are used to create the ODB entries if
they are not present. The new variables can now be used in the summing module like:

ASUM_BANK *asum;
asum—->new_sum = ... - adc_summing_param—>offset;

6.3.6

Online usage

->Offline usage
Compile the analyzer as described in ???. To run the analyzer online, enter:
analyzer [-h <host name>] [-e <exp name>]

where <host name> and <exp name> are optional parameters to connect the analyzer to a
remote back-end computer. This attaches the analyzer to the ODB, initializes all modules, creates
the PAW shared memory and starts receiving events from the system buffer. Then start PAW
and connect to the shared memory and display its contents

This page was generated with the help of DOC++

February 1, 2002 89

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

PAW > global_s onln
PAW > hist/list
1 Trigger
2 Scaler
1000 CADCOO
1001 CADCO1
1002 CADCO2
1003 CADCO3
1004 CADCO4
1005 CADCO5
1006 CADCO6
1007 CADCO7
2000 ADC sum

For each equipment, a N-tuple is created with a N-tuple ID equal to the event ID. The CADC
histograms are created from the adc_calib_bor() routine in adccalib.c. The N-tuple contents is
derived from the banks of the trigger event. Each bank has a switch under /Analyzer/Bank
switches. If the switch is on (1), the bank is contained in the N-tuple. The switches can be
modified during runtime causing the N-tuples to be rebooked. The N-tuples can be plotted with
the standard PAW commands:

PAW > nt/print 1

PAW > nt/plot 1.sum
PAW > nt/plot 1.sum cadc0>3000

1 TR 0>3000
T TR
L T] F [A
| e a 10 |- Hur M Rard
600 |
i 1uan |-
soa |- [
i 1ED -
400 |- 1o |-
B L1
ina - L
B B0 |-
ma - [
- 4an L
00—
L L
u'...l....l... [B L
v 12000 Z0Dan 3000a DEH}:I:I 12000 150020000 25003 J0000
Suk S

Figure 9: PAW output for online N-tuples.

This page was generated with the help of DOC++

February 1, 2002 90

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

While histograms contain the full statistics of a run, N-tuples are kept in a ring-buffer. The
size of this buffer is defined in the ANALYZE_REQUEST structure as the last parameter. A value
of 10000 creates a buffer which contains N-tuples for 10000 events. After 10000 events, the first
events are overwritten. If the value is increased, it might be that the PAWC size (PAWC_DEFINE
in analyzer.c) has to be increased, too. An advantage of keeping the last 10000 events in a buffer
is that cuts can be made immediately without having to wait for histograms to be filled. On
the other hand care has to be taken in interpreting the data. If modifications in the hardware
are made during a run, events which reflect the modifications are mixed with old data. To clear
the ring-buffer for a N-tuple or a histogram during a run, the ODBEdit command [local]/>hi
analyzer <id>

where <id> is the N-tuple ID or histogram ID. An ID of zero clears all histograms but no
N-tuples. The analyzer has two more ODB switches of interest when running online. The
/Analyzer/Output/Histo Dump flag and /Analyzer/Output/Histo Dump Filename determine if
HBOOK histograms are written after a run. This file contains all histograms and the last ring-
buffer of N-tuples. It can be read in with PAW:

PAW >hi/file 1 run00001.rz
PAW > 1ldir

The /Analyzer/Output/Clear histos flag tells the analyzer to clear all histograms and N-tuples
at the beginning of a run. If turned off, histograms can be accumulated over several runs.

6.3.7

Offline usage

->analyzer task

The analyzer can be used for off-line analysis without recompilation. It can read from MIDAS
binary files (*.mid), analyze the data the same way as online, and the write the result to an
output file in MIDAS binary format, ASCII format or HBOOK RZ format. If written to a
RZ file, the output contains all histograms and N-tuples as online, with the difference that the
N-tuples contain all events, not only the last 10000. The contents of the N-tuples can be a
combination of raw event data and calculated data. Banks can be turned on and off in the output
via the /Analyzer/Bank switches flags. Individual modules can be activated/deactivated via the
/Analyzer/Module switches flags.

The RZ files can be analyzed and plotted with PAW. Following flags are available when the
analyzer is started off-line:

-i [filenamel] [filename2] ... Input file name(s). Up to ten different file names can be specified in a
-i statement. File names can contain the sequence ” %05d” which is replaced with the current
run number in conjunction with the -r flag. Following filename extensions are recognized by
the analyzer: .mid (MIDAS binary), .asc (ASCII data), .mid.gz (MIDAS binary gnu-zipped)
and .asc.gz (ASCII data gnu-zipped). Files are un-zipped on-the-fly.

-0 [filename] Output file name. The file names can contain the sequence ”%05d” which is replaced
with the current run number in conjunction with the -r flag. Following file formats can be

This page was generated with the help of DOC++

February 1, 2002 91

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

generated: .mid (MIDAS binary), .asc (ASCII data), .rz (HBOOK RZ file), .mid.gz (MIDAS
binary gnu-zipped) and .asc.gz (ASCII data gnu-zipped). For HBOOK files, CWNT are used
by default. RWNT can be produced by specifying the -w flag. Files are zipped on-the-fly.

-r [range] Range of run numbers to be analyzed like -r 120 125 to analyze runs 120 to 125
(inclusive). The -r flag must be used with a ”%05d” in the input file name.

-n [count] Analyze only count events. Since the number of events for all event types is considered,
one might get less than count trigger events if some scaler or other events are present in the
data.

-n [first] [last] Analyze only events with serial numbers between first and last.
-n [first] [last] [n] Analyze every n-th event from first to last.

-c [filenamel] [filename2] ... Load configuration file name(s) before analyzing a run. File names
may contain a ”%05d” to be replaced with the run number. If more than one file is specified,
parameters from the first file get superseded from the second file and so on. Parameters are
stored in the ODB and can be read by the analyzer modules. They are conserved even after
the analyzer has stopped. Therefore, only parameters which change between runs have to
be loaded every time. To set a parameter like /Analyzer/Parameters/ADC summing/offset
one would load a configuration file which contains:

[Analyzer/Parameters/ADC summing]
Offset = FLOAT : 123

Loaded parameters can be inspected with ODBEdit after the analyzer has been started.

-p [param=value] Set individual parameters to a specific value. Overrides any setting in configu-
ration files. Parameter names are relative to the /Analyzer /Parameters directory. To set the
key /Analyzer/Parameters/ADC summing/offset to a specific value, one uses -p " ADC sum-
ming/offset” =123. The quotation marks are necessary since the key name contains a blank.
To specify a parameter which is not under the /Analyzer/Parameters tree, one uses the full
path (including the initial ” /”) of the parameter like -p ” /Experiment/Run Parameters/Run
mode”=1.

-w Produce row-wise N-tuples in output RZ file. By default, column-wise N-tuples are used.

-v Convert only input file to output file. Useful for format conversions. No data analysis is
performed.

-d Debug flag when started the analyzer from a debugger. Prevents the system to kill the analyzer
when the debugger stops at a breakpoint.

6.4

mlogger task

Multi channel Data logger and history data collector.

This page was generated with the help of DOC++

February 1, 2002 92

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

mlogger is the main application to collect data from the different frontend under certain condition
and store them onto physical device such as disk or tape. It also act as an history event collector
if either the history flags is enabled in the frontend equipment (see The Equipment Structure or
if the ODB tree /History/Links is defined (See History System). See the ODB /Logger Tree for
reference on the Logger ODB tree structure.

e Arguments

b : help

-h hostname : host name (see odbedit task)

-e exptname : experiment name (see odbedit task)

-D : start program as a daemon (UNIX only).
e Usage

>mlogger -D

¢ Remarks

1. As soon as the mlogger is running, the history is mechanism is enabled.

2. The data channels as well as the history logging is rescanned automatically at each
”begin of run” transition. In other word, additional channel can be defined while
running but effect will be taken place only at the following begin of run transition.

3. The default setting defines a data ”Midas” format with a file name of the type
?run%05d.mid”. Make sure this is the requested setting for your experiment.

4. Once the mlogger is running, you should be able to monitor its state through the mstat
task or through a web browser if the mhttpd task is running.

6.5

lazylogger task

Multi channel background data copier.

lazylogger is an application which decouples the data aquisition from the data logging mechanism.
The need of such application has been dictated by the slow response time of some of the media
logging devices (Tape devices). Delay due to tape mounting, retension, reposition imply that the
data acquisition has to hold until operation completion. By using mlogger to log data to disk in
a first stage and then using lazylogger to copy or move the stored files to the ”slow device” we
can keep the acquisition running without interruption.

e Multiple lazylogger can be running comtemporary on the same computer, each one taking
care of a particular channel.

e Each lazylogger channel will have a dedicated ODB tree containg its own information.

o All the lazylogger channel will be under the ODB /Lazy/<channel_name>/....

This page was generated with the help of DOC++

February 1, 2002 93

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

e Fach channel tree is composed of three sub-tree Settings, Statistics, List.

Self-explanatory the Settings and Statistics contains the running operation of the channel.
While the List will have a dynamic list of run number which has been sucessfully manipulate by
the Lazylogger channel. This list won’t exists until the first successful operation of the channel is
complete.

e Arguments

-h : help.
-h hostname : host name.
-e exptname : experiment name.
-D : start program as a daemon.
-c channel : logging channel. Specify the lazylogger to activate.
-z : zap statistics. Clear the statistics tree of all the defined lazylogger channels.
-t : talking messages. Enable some of the info messages to be tagged with the TALK

optlon In order to be spoken either mspeaker or mlxspeaker has to be running.

e ODB parameters (Settings/)

Settings DIR
Maintain free space()) INT 1 4 3m O RWD O
Stay behind INT 1 4 3m O RWD -3
Alarm Class STRING 1 32 3m O RWD
Running condition STRING 1 128 3m O RWD ALWAYS
Data dir STRING 1 266 3m O RWD /home/midas/online
Data format STRING 1 8 3m O RWD MIDAS
Filename format STRING 1 128 3m 0 RWD run%05d.mid
Backup type STRING 1 8 3m O RWD Tape
Execute after rewind STRING 1 64 3m O RWD
Path STRING 1 1288 3m 0 RWD
Capacity (Bytes) FLOAT 1 4 3m O RWD b5e+09
List label STRING 1 1288 3m 0 RWD

Maintain free space As the Data Logger (mlogger) runs independently from the Lazylogger, the disk will
contains all the recorded data files. Under this condition, Lazylogger can be instructed
to ”purge” the data logging device (disk) after successful backup of the data onto
the ”slow device”. The Maintain free space(%) parameter controls (if none zero) the
percentage of disk space required to be maintain free.

The condition for removing a data file is defined as:

The data file corresponding to the given run number following the format declared
under ”Settings/Filename format” IS PRESENT on the ”Settings/Data Dir” path.
AND
The given run number appears anywhere under the ”List/” directory of ALL the Lazy
channel having the same ”Settings/Filename format”as this channel.

AND
The given run number appears anywhere under the ”List/” directory of that channel

Stay behind This parameter defines how many consecutive data file should be kept between the
current run and the last lazylogger run.
Example with ”Stay behind = -3” :
- Current acquisition run number 253 -> run00253.mid is being logger by mlogger.

This page was generated with the help of DOC++

February 1, 2002 94

http:/ /www. linuxsupportline.com/~doc-+-+

Utilities

Alarm Class

Running condition

Data dir

Data format

Filename format
Backup type

Execute after rewind

Path

Capacity (Bytes)

List label

Statistics/

List/

- Files available on the disk corresponding to run #248, #249, #250, #251, #252.

- Lazylogger will start backing up run #250 as soon new run 254 will start.

- ?Stay behind = -3” will correspond to 3 file untouch on the disk (#251, #252, #253).
The negative sign instructs lazylogger to always scan the entire ”Data Dir” from
the oldest to the most recent file sitting on the disk at the ”Data Dir” path
for backup. If the ”Stay behind” is positive, lazylogger will backup starting from x
behind the current acquisition run number. Run older will be ignored.

Specify the Alarm class to be used in case of triggered alarm.

Specify the type of condition for which lazylogger should be actived. By default lazylog-
ger is ALWAYS running. In the case of high data rate acquisition it could be necessary
to active lazylogger only when the run is either pauses, stopped or when some external
condition is satisied such as ”Low beam intensity”. In this later case, condition based
on a single field of the ODB can be given to established when the application should
be active.

Example:

odbedit> set "Running condition" WHILE_ACQ_NOT_RUNNING
odbedit> set "Running condition" "/alias/max_rate < 200"

Specify the Data directory path of the data files. By default if the ” /Logger/Data Dir”
is present, the pointed value is taken otherwise the current directory where lazylogger
has been started is used.

Specify the Data format of the data files. Currently supported format are: MIDAS or
YBOS.

Specify the file format of the data files. Same format as given for the data logger.
Specify the "slow device” backup type. Default Tape. Can be Disk or Ftp.

Specify a script to be run after completion of a lazylogger backup set (see below ”Ca-
pacity (Bytes)”).

Specify the ”slow device” path. Three possible type of Path:

* For Tape : /dev/nst0 (UNIX like).
* For Disk : /datal/myexpt
* For Ftp : host,port,user,password,directory

Specify the maximum ”slow device” capacity in bytes. When this capacity is reached,
lazylogger will close the backup device and clear the ” List Label” field to prevent further
backup (see below). It will aslo rewind the stream device if possible.

Specify a label for a set of backed up files to the ”slow device”. This label is used
only internaly by lazylogger for creating under the ” /List” a new array composed of
the backed up runs until the ” Capacity” value has been reached. As the backup set is
complete, lazylogger will clear this field and therefore prevent any further backup until
a none empty label list is entered again. In the other hand the list label will remain
under the ”/List” key to display all run being backed up until the corresponding files
have been removed from the disk.

ODB tree specifying general information about the status of the current lazylogger
channel state.

ODB tree, will contain arrays of run number associated to the array name backup-set
label. Any run number appearing in any of the array is considered to have been backed

up.

e Usage

lazylogger requires to be setup prior data file can be moved. This setup consists in 4 steps:

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 95

6 Utilities

Step 1 Invoking lazylogger once for setting up the appropriate ODB tree and exit.

>lazylogger -c Tape

Step 2 Edit the newly created ODB tree. Correct the setting field to match your require-
ment.

> odbedit -e midas
[local:midas:Stopped]/>cd /Lazy/tape/
[local:midas:Stopped]tape>ls
[local:midas:Stopped]tape>ls -1lr

Key name Type #Val Size Last Opn Mode Value
tape DIR
Settings DIR
Maintain free space(%) INT 1 4 3m O RWD O
Stay behind INT 1 4 3m O RWD -3
Alarm Class STRING 1 32 3m 0 RWD
Running condition STRING 1 128 3m O RWD ALWAYS
Data dir STRING 1 266 3m O RWD /home/midas/online
Data format STRING 1 8 3m O RWD MIDAS
Filename format STRING 1 128 3m O RWD runj05d.mid
Backup type STRING 1 8 3m 0 RWD Tape
Execute after rewind STRING 1 64 3m O RWD
Path STRING 1 128 3m O RWD
Capacity (Bytes) FLOAT 1 4 3m 0 RWD b5e+09
List label STRING 1 1288 3m O RWD
Statistics DIR
Backup file STRING 1 1288 3m O RWD none
File size [Bytes] FLOAT 1 4 3m O RWD O
KBytes copied FLOAT 1 4 3m O RWD O
Total Bytes copied FLOAT 1 4 3m O RWD O
Copy progress [%] FLOAT 1 4 3m O RWD O
Copy Rate [bytes per s] FLOAT 1 4 3m O RWD O
Backup status [%] FLOAT 1 4 3m O RWD O
Number of Files INT 1 4 3m O RWD O
Current Lazy run INT 1 4 3m O RWD O

[local:midas:Stopped]tape>cd Settings/
[local:midas:Stopped]Settings>set "Data dir" /data
[local:midas:Stopped]Settings>set "Capacity (Bytes)" 15e9

Step 3 Start lazylogger in the background
>lazylogger -c Tape -D

Step 4 At this point the lazylogger is running and waiting for the ”list label” to be defined
before starting the copy procedure. mstat task will display information regarding the
status of the lazylogger.

> odbedit -e midas
[local:midas:Stopped]/>cd /Lazy/tape/Settings
[local:midas:Stopped]Settings>set "List label" cni-043

¢ Remarks

1. For every major operation of the lazylogger a message is sent to the Message buffer
and will be appended to the default Midas log file (midas.log). These messages are
the only mean of finding out What/When/Where/How the lazylogger has operate on
a data file. See below a fragment of the midas.log for the chaos experiment. In this
case the Maintain free space(%) field was enabled which produce the cleanup of the
data files and the entry in the List tree after copy.

This page was generated with the help of DOC++

February 1, 2002 96

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

Fri Mar 24 14:40:08 2000 [Lazy_Tape] 8351 (rm:16050ms) /scrO/spring2000/run08351.ybs file REMOVED
Fri Mar 24 14:40:08 2000 [Lazy_Tape]l Tape run#8351 entry REMOVED

Fri Mar 24 14:59:55 2000 [Logger] stopping run after having received 1200000 events

Fri Mar 24 14:59:56 2000 [CHAOS] Run 8366 stopped

Fri Mar 24 14:59:56 2000 [Logger] Run #8366 stopped

Fri Mar 24 14:59:57 2000 [SUSIYBOS] saving info in run log

Fri Mar 24 15:00:07 2000 [Logger] starting new run

Fri Mar 24 15:00:07 2000 [CHAOS] Run 8367 started

Fri Mar 24 15:00:07 2000 [Logger] Run #8367 started

Fri Mar 24 15:06:59 2000 [Lazy_Tapel cni-043[15] (cp:410.6s) /dev/nst0/run08365.ybs 864.020MB file NE
Fri Mar 24 15:07:35 2000 [Lazy_Tape]l 8352 (rm:25854ms) /scrO/spring2000/run08352.ybs file REMOVED
Fri Mar 24 15:07:35 2000 [Lazy_Tape] Tape run#8352 entry REMOVED

Fri Mar 24 15:27:09 2000 [Lazy_Tape] 8353 (rm:23693ms) /scr0/spring2000/run08353.ybs file REMOVED
Fri Mar 24 15:27:09 2000 [Lazy_Tape] Tape run#8353 entry REMOVED

Fri Mar 24 15:33:22 2000 [Logger] stopping run after having received 1200000 events

Fri Mar 24 15:33:22 2000 [CHAOS] Run 8367 stopped

Fri Mar 24 15:33:23 2000 [Logger] Run #8367 stopped

Fri Mar 24 15:33:24 2000 [SUSIYBOS] saving info in run log

Fri Mar 24 15:33:33 2000 [Logger] starting new run

Fri Mar 24 15:33:34 2000 [CHAOS] Run 8368 started

Fri Mar 24 15:33:34 2000 [Logger] Run #8368 started

Fri Mar 24 15:40:18 2000 [Lazy_Tape] cni-043[16] (cp:395.4s) /dev/nst0/run08366.ybs 857.677MB file NE
Fri Mar 24 15:50:15 2000 [Lazy_Tape] 8354 (rm:28867ms) /scr0/spring2000/run08354.ybs file REMOVED
Fri Mar 24 15:50:15 2000 [Lazy_Tape] Tape run#8354 entry REMOVED

2. Once lazylogger has started a job on a data file, trying to terminate the application will
result on producing a log message informing about the actual percentage of the backup
being completed so far. This message will repeat it self until completion of the backup
and only then the lazylogger application will terminate.

3. If an interruption of the lazylogger is forced (kill...) The state of the backup device is
undertermined. Recovery is not possible and the full backup set has to be redone. In
order to do this, you need:

(a) To rewind the backup device.
(b) Delete the /Lazy/<channel name>/List/<list label> array.
(c) Restart lazylogger with the -z switch which will ”zap” the statistics entries.

4. In order to facilitate the recovery procedure, lazylogger produces an ODB ASCII
file of the lazy channel tree after completion of successful operation. This file
(Tape_recover.odb) stored in Data Dir can be used for ODB as well as lazylog-
ger recovery.

6.6

mdump task

Event display utility.

This application allows to ”peep” into the data flow in order to display a snap-shot of the event.
Its use is particularly powerful during experiment setup. In addition mdump has the capability
to operate on data save-set files stored on disk or tape. The main mdump restriction is the fact
that it works only for events formatted in banks (i.e.. MIDAS, YBOS bank).

This page was generated with the help of DOC++

February 1, 2002 97

http:/ /www. linuxsupportline.com/~doc-+-+

Utilities

e Arguments for Online

-h

-h hostname
-e exptname
-b bank name :
-C compose

-f format :

-g type

: help for online use.
: Host name.

: Experiment name.

Display event containg only specified bank name.

: Retrieve and compose file with either Add run# or Not (def:N).

Data representation (x/d/ascii) def:hex.

: Sampling mode either Some or All (def:S).

>>> in case of -c it is recommented to used -g all.

siid
_j :
kid

Event Id.
Display bank header only.

Event mask.

>>> -i and -k are valid for YBOS ONLY if EVID bank is present in the event

-1 number

-m mode :

-p path :

-s

-w time :

-x filename
-y

-z buffer name :

: Number of consecutive event to display (def:1).

Display mode either Bank or Raw (def:B)

Path for file composition (see -¢)

: Data transfer rate diagnositic.

Insert wait in [sec] between each display.

: Input channel. data file name of data device. (def:online)

: Display consistency check only.

Midas buffer name to attach to (def:SYSTEM)

e Additional arguments for Offline

x-h :
-t type :

help for offline use.
Bank format (Midas/Ybos).

>>> if -x is a /dev/xxx, -t has to be specified.

-r F#

-w what :

skip record(YBOS) or event(MIDAS) to #-.
Header, Record, Length, Event, Jbank list (def:E)

>>> Header & Record are not supported for MIDAS as it has no physical record struc-
ture.

o Usage
mdump can operate on either data stream (online) or on save-set data file. Specific help is
available for each mode.

> mdump -h
> mdump -x -h

Tue> mdump -x run37496.mid | more

—————— Event# 0 --------—-——-"—--—--r-——

e Event# 1 - —————----

Evid:0001- Mask:0100- Serial:1- Time:0x393c299a- Dsize:72/0x48
#banks:2 - Bank list:-SCLRRATE-

Bank:SCLR Length: 24(I*1)/6(I%4)/6(Type) Type:Integer*4
1-> 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

Bank:RATE Length: 24(I*1)/6(I*4)/6(Type) Type:Real#4 (FMT machine dependent)

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 98

6 Utilities

1-> 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
———— Event# 2 -------—-————-—-———-r———
Evid:0001- Mask:0004- Serial:1- Time:0x393c299a- Dsize:56/0x38
#banks:2 - Bank list:-MMESMMOD-

Bank:MMES Length: 24(I*1)/6(I*4)/6(Type) Type:Real#4 (FMT machine dependent)
1-> 0x3de35788 0x3d0b0e29 0x00000000 0x00000000 0x3£800000 0x00000000

Bank:MMOD Length: 4(I*1)/1(I*4)/1(Type) Type:Integerx4

1-> 0x00000001
- ———— Event# 3 --—————————————
Evid:0001- Mask:0008- Serial:1- Time:0x393c299a- Dsize:48/0x30
#banks:1 - Bank list:-BMES-

Bank:BMES Length: 28(I*1)/7(I*4)/7(Type) Type:Real#4 (FMT machine dependent)
1-> 0x443d7333 0x444cf333 0x44454000 0x4448e000 0x43bcab67 0x43ce0000 0x43£98000
-- e Event# 4 ———————————-—————————
Evid:0001- Mask:0010- Serial:1- Time:0x393c299a- Dsize:168/0xa8
#banks:1 - Bank list:-CMES-

Bank:CMES Length: 148(I#%1)/37(I*4)/37(Type) Type:Real*4 (FMT machine dependent)
1-> 0x3f2f9fe2 0x3ff77fd6 0x3f173fe6 Ox3daeffe2 0x410f83e8 0x40ac07e3 0x3f6ebfd8 0x3c47ffde
9-> 0x3e60ffda 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x3£800000
17-> 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
25-> 0x3£800000 0x3£800000 0x3£800000 0x00000000 0x3£800000 0x00000000 0x3f800000 0x3£800000
33-> 0x3£800000 0x3£800000 0x3£800000 0x3£800000 0x00000000

- e Event# 5 ----- e

Evid:0001- Mask:0020- Serial:1- Time:0x393c299a- Dsize:32/0x20

#banks:1 - Bank list:-METR-

Bank:METR Length: 12(I*1)/3(I*4)/3(Type) Type:Real#4 (FMT machine dependent)
1-> 0x00000000 0x39005d87 0x00000000

o Examples

> mdump -j

6.7

mevb task

Midas Event Builder.

Names

6.7.1 Function descriptiono it 101
6.7.2 ODB/EBuilder Treec.ciiiiiiiiiiiiiiiiiianaan.. 101
6.7.3 EB Operation ... 102

This page was generated with the help of DOC++

February 1, 2002 99

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

6.7.4 mevb Status/Bugs ... 105
6.7.5 INT eb_begin_of run (INT rn, char* error)

eb_begin_of _run() Hook to the event builder

task at PreStart transition. 105
6.7.6 INT eb_end_of run (INT rn, char* error)

eb_end_of-run() Hook to the event builder
task at completion of event collection after
receiving the Stop transition. 106

6.7.7 INT eb_user() (INT nfrag, EBUILDER_.CHANNEL* ebch,
EVENT_HEADER* pheader, void* pevent,
INT* dest_size)
event builder user code for private data fil-
TETing. oove e 106

mevb is a event builder tool assembling multiple event fragment received from different event
buffers.

In the case where overall data collection is handled by multiple physically separated frontend,
it could be necessary to assemble these data fragments into a dedicated event. The synchonization
of the fragment collection is left to the user which is done usually through specific hardware
mechanism. Once the fragments are composed in each frontend, they are sent to the ”Event
Builder” (eb) where the serial number (pheader->serial number) of each fragment is compared one
event at a time for serial match. In case of match, a new event will be composed with its own
event ID and serial number followed by all the expected fragments. The composed event is then
sent to the next stage which is usually the data logger (mlogger).

The mhttpd task will present a specific section on its page for the ”event builder” task if
running.

e Arguments

b : help

-h hostname : host name

-e exptname : experiment name

-v : Show wheel
-d : debug messages

-D : start program as a daemon

e Usage

Thu> mevb -e midas
Program mevb/EBuilder version 2 started

This page was generated with the help of DOC++

February 1, 2002 100

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

6.7.1

Function description

->ODB/EBuilder Tree

Each frontend channel needs to send its "midas event” (fragment in this case) to a dedicated
midas buffer with a unique ”Event Identifier”. This is specified within the frontend code in the
equipment definition (BUF1 instead of default SYSTEM, see also ODB /Equipment Tree):

EQUIPMENT equipment[] = {

{ "Trigger1", // equipment name
1, 0, // event ID, trigger mask
"BUF1", // event buffer

The user has the possibility of interfering into the event building process at several stages:

Begin of run Like in the frontend, a hook to the begin of run is available for initialization etc.

End of run Like in the frontend, a hook to the end of run is available for proper closure of private task
etc.

Event-By_Event Once all the fragments for a given serial number (match), the user has the possibility to
access these fragments for further ”user fragment analysis” and/or appending private data
to the built event through the mean of bank creation (see eb_user()).

In the case of serial number mismatch of ”user fragment analysis” error, THERE IS NO

RECOVERY PROCESS AVAILABLE YET!

6.7.2

ODB/EBuilder Tree

->EB Operation

The Event builder tree will be created with default settings from the mevb.h header file. The
location of the tree is at the root level of the midas experiment. Each frontend fragment and
the ”built event” has its own subdirectory under the /EBuilder with a Settings tree defining the
frontend characteristics and Statistics for status information.

The fields "Event ID”, ”Buffer” have to match the frontend equipment definition in order to
garantee the proper data transfer.

[local:midas:S]/>1s -1r EBuilder

Key name Type #Val Size Last Opn Mode Value
EBuilder DIR
Settings DIR

This page was generated with the help of DOC++

February 1, 2002 101

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

Event ID WORD 1 2 35h 0 RWD 1
Trigger mask WORD 1 2 356h 0 RWD 1
Buffer STRING 1 32 35h 0 RWD SYSTEM
Format STRING 1 32 35h 0 RWD MIDAS
User build BOOL 1 4 35h 0 RWD n
Event mask DWORD 1 4 356h 0 RWD 3
Hostname STRING 1 64 43m O RWD dasdevpc
Statistics DIR
Events sent DOUBLE 1 8 38m O RWD 1883
Events per sec. DOUBLE 1 8 38m O RWD O
kBytes per sec. DOUBLE 1 8 38m O RWD O
Channels DIR
Fragl DIR
Settings DIR
Event ID WORD 1 2 35h 0 RWD 1
Trigger mask WORD 1 2 356h O RWD 65535
Buffer STRING 1 32 35h 0 RWD BUF1
Format STRING 1 32 35h 0 RWD MIDAS
Event mask DWORD 1 4 35h 0 RWD 1
Statistics DIR
Events sent DOUBLE 1 8 38m O RWD 1883
Events per sec. DOUBLE 1 8 38m O RWD 1881.12
kBytes per sec. DOUBLE 1 8 38m O RWD O
Frag2 DIR
Settings DIR
Event ID WORD 1 2 35h 0 RWD 2
Trigger mask WORD 1 2 35h 0 RWD 65535
Buffer STRING 1 32 35h 0 RWD BUF2
Format STRING 1 32 35h 0 RWD MIDAS
Event mask DWORD 1 4 35h 0 RWD 2
Statistics DIR
Events sent DOUBLE 1 8 38m O RWD 1884
Events per sec. DOUBLE 1 8 38m O RWD 1882.12
kBytes per sec. DOUBLE 1 8 38m O RWD O
6.7.3

EB Operation

->mevb Status/Bugs

Using the ”eb>” as the cwd for the example, the test procedure is the following;:
cwd : midas/examples/eventbuilder -> refered as eb>

1. Build the mevb task:

eb> make

cc -g -I/usr/local/include -I../../drivers -DOS_LINUX -Dextname -c ebuser.c

cc -g -I/usr/local/include -I../../drivers -DOS_LINUX -Dextname —-o mevb mevb.c \
ebuser.o /usr/local/lib/libmidas.a -1m -1z -lutil -1nsl

This page was generated with the help of DOC++

February 1, 2002 102

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

cc -g -I/usr/local/include -I../../drivers -DOS_LINUX -Dextname \
-¢c ../../drivers/bus/camacnul.c
cc -g -I/usr/local/include -I../../drivers -DOS_LINUX -Dextname -o fel \
fel.c camacnul.o /usr/local/lib/mfe.o /usr/local/lib/libmidas.a \
-1m -1z -lutil -1lnsl
cc -g -I/usr/local/include -I../../drivers -DOS_LINUX -Dextname -o fe2 \
fe2.c camacnul.o /usr/local/lib/mfe.o /usr/local/lib/libmidas.a \
-lm -1z -lutil -1nsl
eb>

2. Start the following 4 applications in 4 differents windows connecting to a defined experiment.
— If no experiment defined yet, set the environment variable MIDAS_DIR to your current
directory before spawning the windows.

eb> pwd
/home/midas/midas-1.8.3/examples/eventbuilder
eb> setenv MIDAS_DIR /home/midas/midas-1.8.3/examples/eventbuilder
eb> odbedit

[local:Default:S]1/>1s

System

Programs

Experiment

Logger

Runinfo

Alarms

[local:Default:S]/>q

eb>

xterm1: eb> fel
xterm2: eb> fe2
xterm3: eb> mevb
xterm4: eb> odbedit

[local:Default:S]/>1s

System

Programs

Experiment

Logger

Runinfo

Alarms

Equipment

EBuilder <--- New tree
[local:Default:S]1/>scl

Name Host

Fel dasdevpc <--- fragment 1
Fe2 dasdevpc <--- fragment 2
EBuilder dasdevpc <--- Event builder
ODBEdit dasdevpc
[local:Default:S1/>

[local:Default:S]/>start now

Starting run #2

12:12:11 [ODBEdit] Run #2 started

This page was generated with the help of DOC++

February 1, 2002 103

http:/ /www. linuxsupportline.com/~doc-+-+

Utilities

[local

:Default:R]/>stop

12:12:13 [0DBEdit] Run #2 stopped
12:12:16 [EBuilder] Run 2 Stop on frag#0; events_sent 144; npulser 0
12:12:16 [EBuilder] Run 2 Stop on frag#l; events_sent 144; npulser 0

[local

:Default:S1/>

3. The xterm3 (mevb) should display something equivalent to the following, as the print state-
ments are coming from the ebuser code.

New Run 2

In eb_begin_of_run

nfrag : 2

bm_empty_buffer:1
bm_empty_buffer:1

Event Seriall Fragment#:1 Data
Event Serial2 Fragment#:1 Data
Event Serial3 Fragment#:1 Data
Event Serial4 Fragment#:1 Data
Event Serialb5 Fragment#:1 Data

Event
Event
Event
Event
In eb

Seriall4l Fragment#
Seriall42 Fragment#
Seriall43 Fragment#
Seriall44 Fragment#

_end_of_run

size:56 Seriall Fragment#:2 Data size
size:56 Serial2 Fragment#:2 Data size
size:56 Serial3 Fragment#:2 Data size
size:56 Serial4 Fragment#:2 Data size
size:56 Serialb Fragment#:2 Data size

:1 Data size
:1 Data size
:1 Data size
:1 Data size

:566 Seriall4l Fragment#:2 Data
:566 Seriall42 Fragment#:2 Data
:566 Seriall43 Fragment#:2 Data
:56 Seriall44 Fragment#:2 Data

Run 2 Stop on frag#0; events_sent 144; npulser 0
Time between request and actual stop: 3457 ms

In eb_

end_of_run

Run 2 Stop on frag#l; events_sent 144; npulser 0
Time between request and actual stop: 3459 ms

:56
:56
:56
:56
:56

size
size
size
size

4. The same procedure can be repeated with the fel and fe2 started on remote nodes.

eb> odb -e midas

[local
Name
Fel
Fe2
EBuild
ODBEdi
[local

Thu> m

:midas:S]/>scl
Host
mid001.triumf.ca
mid002.triumf.ca
er dasdevpc
t dasdevpc
:midas:S]1/>
evb -e midas

<-- Node 1
<-- Node 2
<-- Node 3
<-- Node 3

Program mevb/EBuilder version 2 started

New Run 209
In eb_begin_of_run

nfrag :

bm_emp
bm_emp

2
ty_buffer:1
ty_buffer:1

Seriall
Serial2
Serial3
Serial4
Serialb

:56 Serialil4l
:56 Seriall4?2
:56 Serialil43
:56 Seriall44d

Event Seriall Fragment#:1 Data size:56 Seriall Fragment#:2 Data size:56 Seriall
Event Serial2 Fragment#:1 Data size:56 Serial2 Fragment#:2 Data size:56 Serial2
Event Serial3 Fragment#:1 Data size:56 Serial3 Fragment#:2 Data size:56 Serial3

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002

104

Utilities

Event
Event
Event
Event

Event
In eb

Serial4 Fragment#:1 Data size:56 Serial4 Fragment#:2 Data size:56 Seriald
Serialb Fragment#:1 Data size:56 Serialb Fragment#:2 Data size:56 Serialb

Serial233 Fragment#:1 Data size:56 Serial233 Fragment#:2 Data size:56 Serial233
Serial234 Fragment#:1 Data size:56 Serial234 Fragment#:2 Data size:56 Serial234
Serial235 Fragment#:1 Data size:56 Serial235 Fragment#:2 Data size:56 Serial235
end_of_run

Run 209 Stop on frag#0; events_sent 235; npulser 0
Time between request and actual stop: 4488 ms

6.7.4

mevb Status/Bugs

->mevb task

Jan 17/2002 — Initial Version composed of:
Makefile : Build fel, fe2, mevb.
fel.c : frontend code for event fragment 1.
fe2.c : frontend code for event fragment 2.
mevb.h : Event builder header file.
mevb.c : Event builder core code.
ebuser.c : User code for event building.

e Under Linux if the FEx are remote and have already collected data without the mevb
running, on the next run start, the mevb will exit with event mismatch. Make sure the
mevb is started before the FEx or the FEx are "fresh” when mevb is launched. It appears
when mevb is running under Windows this problem is not occuring.

e mdump needs to be updated for event information extraction from the /EBuilder tree. This
will permit a proper event display from the SYSTEM buffer.

6.7.5

INT eb_begin_of run (INT rn, char* error)

eb_begin_of-run() Hook to the event builder task at PreStart transition.

eb_begin_of_run() Hook to the event builder task at PreStart transition.

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 105

6 Utilities

Return Value: EB_SUCCESS
Parameters: rn Run Number
error error string to be passed back to the system.

6.7.6

INT eb_end _of run (INT rn, char® error)

eb_end_of-run() Hook to the event builder task at completion of event collection after receiving
the Stop transition.

eb_end_of run() Hook to the event builder task at completion of event collection after receiving
the Stop transition.

Return Value: EB_SUCCESS
Parameters: rn Run Number
error error string to be passed back to the system.

6.7.7
INT eb_user() (INT nfrag, EBUILDER_CHANNEL* ebch,
EVENT_HEADER* pheader, void* pevent, INT* dest_size)

event builder user code for private data filtering.

Hook to the event builder task after the reception of all fragments of the same serial number. The
destination event has already the final EVENT_HEADER setup with the data size set to 0. It is
than possible to add private data at this point using the proper bank calls.

The ebch[] array structure points to nfragment channel structure with the following content:

typedef struct {

char name[32]; // Fragment name (Buffer name).
DWORD serial; // Serial fragment number.
char *pfragment; // Pointer to fragment (EVENT_HEADER x)

} EBUILDER_CHANNEL;

The correct code for including your own bank is shown below where TID_xxx is one of the
valid Bank type starting with TID_ for midas format or xxx BKTYPE for Ybos data format.
bank name is a 4 character descriptor. pdata has to be declared accordingly with the bank
type. Refers to the ebuser.c source code for further description.

It is not possible to mix within the same destination event different
event format!

This page was generated with the help of DOC++

February 1, 2002 106

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

// Event is empty, fill it with BANK_HEADER
// If you need to add your own bank at this stage

bk_init (pevent) ;

bk_create(pevent, bank_name, TID_xxxx, &pdata) ;
*pdata+t+ = ...;
*dest_size = bk_close(pevent, pdata);

pheader->data_size = xdest_size + sizeof (EVENT_HEADER);

Return Value:

Parameters: nfrag Number of fragment.
ebch Structure to all the fragments.
pheader Destination pointer to the header.
pevent Destination pointer to the bank header.

dest_size Destination event size in bytes.

6.8

mspeaker, mlxspeaker tasks

Midas message speech synthesizer.

mspeaker, mlxspeaker are utilities which listen to the Midas messages system and pipe these
messages to a speech synthesizer application. mspeaker is for the Windows based system and
interface to the FirstByte/ProVoice package. The mlxspeaker is for Linux based system and
interface to the Festival. In case of use of either package, the speech synthesis system has to be
install prior the activation of the mspeaker, mlxspeaker.

e Arguments

-h : help
-h hostname : host name
-e exptname : experiment name

-D : start program as a daemon

e Usage

> mlxspeaker -D

This page was generated with the help of DOC++

February 1, 2002 107

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

6.9

mcnaf task

CAMAC utility.

mcnaf is an interactive CAMAC tool which allow ”direct” access to the CAMAC hardware. This
application is operational under either of the two following conditions:

1. mcnaf has been built against a particular CAMAC driver (see CAMAC drivers).

2. A user frontend code using a valid CAMAC driver is currently active.

e Arguments

-h : help
-h hostname : host name
-e exptname : experiment name
-f frontend name : Frontend name to connect to.

-s RPC server name : CAMAC RPC server name for remote connection.

¢ Building application
The midas/utils/makefile.mcnaf will build a collection of menaf applications which are hard-
ware dependent, see example below:

miocnaf enaf application using the declared CAMAC hardware DRIVER (kcs2927 in this case).
To be used with dio CAMAC application starter (see dio task).

mwecnaf cnaf application using the WI-E-N-ER PCI/CAMAC interface (see CAMAC drivers).
Please contact midas@triumf.ca for further information.

mcnaf cnaf application using the CAMAC RPC capability of any Midas frontend program
having CAMAC access.

mdrvcnaf cnaf application using the Linux CAMAC driver for either kcs2927, kes2926, dsp004.
This application would require to have the proper Linux module loaded in the system
first. Please contact midas@triumf.ca for further information.

Thu> cd /midas/utils

Thu> make -f makefile.mcnaf DRIVER=kcs2927

gcc -03 -I../include -DOS_LINUX -c -o mcnaf.o mcnaf.c

gcc -03 -I../include -DOS_LINUX -c -o kcs2927.o ../drivers/bus/kcs2927.c

gcc -03 -I../include -DOS_LINUX -o miocnaf mcnaf.o kcs2927.o ../linux/lib/libmidas.a -lutil
gcc -03 -I../include -DOS_LINUX -c -o wecc32.o ../drivers/bus/wecc32.c

gcc -03 -I../include -DOS_LINUX -o mwecnaf mcnaf.o wecc32.o0 ../linux/lib/libmidas.a -lutil
gcc -03 -I../include -DOS_LINUX -c -o camacrpc.o ../drivers/bus/camacrpc.c

gcc -03 -I../include -DOS_LINUX -o mcnaf mcnaf.o camacrpc.o ../linux/lib/libmidas.a -lutil
gcc -03 -I../include -DOS_LINUX -c -o camaclx.o ../drivers/bus/camaclx.c

gcc -03 -I../include -DOS_LINUX -o mdrvcnaf mcnaf.o camaclx.o ../linux/lib/libmidas.a -lutil
rm *.0

e Running application

This page was generated with the help of DOC++

February 1, 2002 108

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

— Direct CAMAC access: This requires the computer to have the proper CAMAC in-
terface installed and the BASE ADDRESS matching the value defined in the cor-
responding CAMAC driver. For kcs2926.c, kes2927.¢, dsp004.c¢, hyt1331.c, the base
address (CAMAC_BASE) is set to 0x280.

>dio miocnaf

— RPC CAMAC through frontend: This requires to have a frontend running which will
be able to serve the CAMAC RPC request. Any Midas frontend has that capability
built-in but it has to have the proper CAMAC driver included in it.

>mcnaf -e <expt> -h <host> -f <fe_name>

6.10

mhttpd task

Midas Web server.

Names

6.10.1 Start page 112
6.10.2 ODB page 114
6.10.3 Equipment page ... 116
6.10.4 CNAF page i e 117
6.10.5 Message PAZE i 117
6.10.6 Elog page 118
6.10.7 Program page = ... 120
6.10.8 History page .o i 120
6.10.9 Custom page e 121

This daemon application has to run in order to allow the user to access from a Web browser
any Midas experiment running on a given host. Full monitoring and ” Almost” full control of a
particular experiment can be achieved through this Midas Web server. The color coding is green
for present/enabled, red for missing/disabled, yellow for inactive. It is important to note the
refresh of the page is not "event driven” but is controlled by a timer (see Config button). This
mean the information at any given time may reflect the experiment state of up to n second in the
paste, where n is the timer setting of the refresh parameter. Its basic functionality are:

e Run control (start/stop).

This page was generated with the help of DOC++

February 1, 2002 109

http:/ /www. linuxsupportline.com/~doc-+-+

Utilities

e Frontend up-to-date status and statistics display.

e Logger up-to-date status and statistics display.

e Lazylogger up-to-date status and statistics display.

e Current connected client listing.

e Slow control data display.

e Basic access to ODB.

e Graphical history data display.

e Electronic LogBook recording/retrival messages

e Alarm monitoring/control

e ... and more ...

mhttpd requires as argument the TCP/IP port number in order to listen to the web based

request.

e Arguments

-h : help
-p port : port number, no default, should be 8081 for example.

-D : start program as a daemon

e Usage

>mhttpd -p 8081 -D

e Description Once the connection to a given experiment is established, the main Midas
status page is displayed with the current ODB information related to this experiment. The
page is sub-divised in several sections:

Experiment/Date Current Experiment, current date.

Action/Pages buttons Run control button, Page switch button. At any web page level within the Midas Web
page the main status page can be invoked with the <status> button.

Start... button
ODB button

CNAF button

Messages button
Elog button

Alarms button

Depending on the run state, a single or the two first buttons will be showing the
possible action (Start/Pause/Resume/Stop) (see Start page).

Online DataBase access. Depending on the security, R/W access can be granted
to operated on any ODB field (see ODB page).

If one of the equipment is a CAMAC frontend, it is possible to issue CAMAC
command through this button. In this case the frontend is acting as a RPC CAMAC
server for the request (see CNAF page).

Shows the n last entries of the Midas system message log. The last entry is always
present in the status page (see below) (see Messages page).

Electronic Log book. Permit to record permanently (file) comments/messages com-
posed by the user (see Elog page).

Display current Alarm setting for the entire experiment. The activation of an alarm
has to be done through ODB under the /Alarms tree (See Alarm System)

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 110

Utilities

Program button Display current program (midas application) status. Each program has a specific

information record associated to it. This record is tagged as a hyperlink in the
listing (see Program page).

History button Display History graphs of pre-defined variables. The history setting has to be done

through ODB under the /History (see History System, History page).

Config button Allows to change the page refresh rate.

Help button Help and link to the main Midas web pages.

User button(s)

Version<1.8.3 Alias Hyperlink

rsion >= 1.8.3 Alias Hyperlink

General info

Equipment listing

Logger listing

If the user define a new tree in ODB named Script than any sub-tree name will appear
as a button of that name. Each sub-tree (/Script/<button name>/) should contain at
least one string key being the script command to be executed. Further keys will be
passed as arguments to the script. Midas Symbolic link are permitted.

Ezample: The example below defines a script names doit with 2 arguments (run# device)
which will be invoked when the button <doit> is pressed.

odbedit

mkdir Script

cd Script

mkdir doit

cd doit

create string cmd

1n "/runinfo/run number" run
create string dest

set dest /dev/hda

This line will be present on the status page only if the ODB tree /Alias or /Alias
new window exists. This hyperlink will invoke the page within the current frame if
placed in ” Alias” or in a separate frame if placed in ” Alias new window”.

This line will be present on the status page only if the ODB tree /Alias. The distinction
for spawning a secondary frame with the link request is done by default. For forcing the
link in the current frame, add the terminal charater ”&” at the end of the link name.
Ezxample: The example will create a shortcut to the defined location in the ODB.

odbedit

1s

create key Alias

cd Alias

1n /Equipment/Trigger/Common "Trig Setting"
1n /Analyzer/Output "Analyzer"

create key "Alias new window" <-- Version < 1.8.3
cd "Alias new window"
1n /equipment/Scalers/Variables "Scalers Var"

or
cd Alias
1n /Equipment/Trigger/Common "Trig Setting&" <-- Version >= 1.8.3

Current run number, state, General Enable flag for Alarm, Auto restart flag Condition
of mlogger.

Equipment name (see Equipment page), host on which its running, Statistics for that
current run, analyzed percentage by the ”analyzer” (The numbers are valid only if the
name of the analyser is ” Analyzer”).

Logger list. Multiple logger channel can be active (single application). The hyperlink
”0” will bring you to the odb tree /Logger/channels/0/Settings. This section is present
only when the Midas application mlogger task is running.

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 111

6 Utilities

Lazylogger listing Lazylogger list. Multiple lazy application can be active. This section is present only
when the Midas application lazylogger task is running.

Last system message Display a single line containing the last system message received at the time of the last
display refresh.

Current client listing List of the current active Midas application with the hostname on which their running.

Title . | MIDAN experiment "midas" ‘ Mon Dec 18 14:42:06 2000

Action'Pages Startl DDEIl CNAF' Messages | ELugl Alarms | Programs | Histary | Caonfig |_I-

User hottonds) . dnitl doit2 |

Trigzer hution(s) _, Trigger Scaler event |

Alins/Alins new window _ o |Trj,g setting doit setting

Ge:nerallm{ et

| Start: Wed MNov 22 10:00:37 2000

start: Tes | Logging disabled
Stop: Wed Now 22 10:01:48 2000

|
o | Equipment | FE Node | Events ‘ Event rate[/s] | Data rate[kB/s] | Anal;
Equipment isting | | [Trigzer f 04| 7111 | 0.0 | 0.0
| |[Sealer i o | o0 | 0.0
! | Channel | Active ‘ Events | MMB written | GEBt
Logger Channels | |0 1000063 rnid | Disabled | 0 o000 | 00
|1 run00063.mid | Disabled | 0 . o000 | 00
) | Lazy Lahel | Progress ‘ File I{ame | # Files | To
Disk 01 0 % 0 0.0
ﬁﬂlﬁ) IT:EE 01 I 0'3/: I 0 I 0.0
Last system message _): |Mun Dec 18 14:40:06 2000 [mhttpd] Program mhttpd on host midmes0d started
—— | feflash [midmes04] | Logger[midmes04] | Lazy_ Disk [midmes04
| Lazy_Tape [midmes04] | mhttpd [midmes04]
Figure 10: Midas Web server.
6.10.1
Start page

Once the Start button is pressed, you will be prompt for experiment specific parameters before

This page was generated with the help of DOC++

February 1, 2002 112

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

starting the run. The minimum set of parameter is the run number, it will be incremented by
one relative to the last value from the status page. In the case you have defined the ODB tree
/Experiment /Edit on Start all the parameters sitting in this directory will be displayed for
possible modification. The Ok button will proceed to the start of the run. The Cancel will abort
the start procedure and return you to the status page.

MIDAS experiment "e614" Tue Dec 19 09:50:16 2000
| Start new run

Eun mumber |895

Cotmment ITest, -150 mv th
“Write Data Iy

Exp tyvpe |3 mod test
Operators ISCW RE

Sc 1 HV (volts) |2300

Sc 2 HV (volts) |1800

G345 type IAr 25 I=o 75

71 HV (volts) |-znoo

V1 HV (volts) |-2000

U2 HV (volts) |-2000

V2 HV (wolts) |-1750

U3 HY (volts) |-2o00

V3 HV (volts) |-2noo

Preamp (mW) |42EID

‘ Start | Cancel |

Figure 11: Start run request page. In this case the user has multiple run parameters defined under
” /Experiment/Edit on Start”.

The title of each field is taken from the ODB key name it self. In the case this label has a
poor meaning and extra explanation is required, you can do so by creating a new ODB tree under
experiment Parameter Comments/. Then by creating a string entry named as the one in Edit
on Start you can place the extra information relative to that key (html tags accepted).

This ”parameter comment” option is available and visible ONLY under the midas web page,
the odbedit start command will not display this extra information.

[local:midas:S]/Experiment>ls -1r
Key name Type #Val Size Last Opn Mode Value

This page was generated with the help of DOC++

February 1, 2002 113

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

Experiment DIR
Name STRING 1 32 17s 0 RWD midas
Edit on Start DIR
Write data BOOL 1 4 16m O RWD ¥y
enable BOOL 1 4 16m O RWD n
nchannels INT 1 4 16m O RWD O
dwelling time (ns) INT 1 4 16m O RWD O
Parameter Comments DIR
Write Data STRING 1 64 44m O RWD Enable logging
enable STRING 1 64 Tm O RWD Scaler for expt Bl only
nchannels STRING 1 64 14m O RWD <i>maximum 1024</i>
dwelling time (ns) STRING 1 64 8m O RWD Check hardware now
[local:midas:S]Edit on Start>ls -1
Key name Type #Val Size Last Opn Mode Value
Write Data LINK 1 19 50m O RWD /logger/Write data
enable LINK 1 12 22m 0 RWD /sis/enable
number of channels LINK 1 15 22m 0 RWD /sis/nchannels
dwelling time (ns) LINK 1 24 12m 0 RWD /sis/dwelling time (us)

MIDAS experiment

e Fri Oct 12 10:33:15 2001
midas

Start new rmmn

Fun number E

Write Data
Enable logging

enahle |
Scaler for expt B1 only

nunber of channels |
maximire {024

dwrelling time (ns)

Check hardware now |D

Start | Cancel

Figure 12: Start run request page. Extra comment on the run condition is displayed below each
entry.

6.10.2

ODB page

This page was generated with the help of DOC++

February 1, 2002 114

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

The ODB page shows the ODB root tree at first. Clicking on the hyperlink will walk you to the
requested ODB field. The example below show the sequence for changing the variable ”PA” under
the /equipment/PA /Settings/Channels ODB directory. A possible shortcut

If the ODB is Write protected, a first window will request the web password.

|Find| Create I Delete I Alarms I Programs I Status IHeIpI

Create Elog fram this page

—

| Key | Value
System
Ruifo MIDAS experiment "e614" | Tue Dec 19 09:59:05 2000
|Progga.ms |Find| Create I Delete I Alarms I Programs I Status IHeIpI
|E—Xm | Create Elog from this page _
{ Equipment /
Eg = | Y | MIDAS experiment "e614"
uiptnent :

History ‘ z_ﬂ,og.;g |Fin|:|| Create I Delete I Alarms I Programs I Status IHeIpI
alias & | Create Elog from this page _
Status e 2l { Equipment / PA /
| | DA experment o614

Start?:::: |Find| Create I Delete I Alarms I Programs I Status IHeIpI*

Settings g | Create Elog from this page _

Variables | { Equipment { PA / Settings /
- | Key | Value
[VTP sensitivity(mV) 1
If ODB is Write protected |Thesh sensitvityn?) 2
[VVolt. sensitivity (V) o1
‘ I |Channels | %

Devices
‘ Submit

| bawss experment evis | 1uewec1910:00:192000 | | oz Elog fom this page _
. Setmewvale-gpe=INT | | | Equipment / PA / Settings / Chamnels /

‘EqmpmentfPMSetﬁlgstharmelsfPA ||3 6 | Key | Value
| Setl Cancel | |PA [¥) |36§0X241

-

Figure 13: ODB page access.

i

|Find| Create I Delete I Alarms I Programs I Status I Helpl

This page was generated with the help of DOC++

February 1, 2002 115

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

6.10.3

Equipment page

The equipment names are linked to their respective /Variables sub-tree. This permit to access
as a shortcut the current values of the equipment. In the case the equipment is a slow control
equipment, the parameters list may be hyperlinked for parameter modification. This option is
possible only if the parameter names have a particular name syntax (see History System).

| MIDAS experiment “e614" | Mon Dec 18 14:21:54 2000

|ODB| |Status| |Help|

Eguipment: PA

Groaps: All Cratel Cratel

Names |D_VTp M_VTp |D_Thres M_ThresA M_ThresB |D_TP M_TP Temp Voltage+ Voltage-
go | o | o | o | o0 | 0 | o | n |51 |-0018 | -0006
|si1 | 1850 | 1852 | 1011 | -1002 | -998 | n | n |313 | 5061 | -5.103
[s12 | 1793 | 1793 | 1017 | -1002 | -999 | n | n [338 | 5099 | -5112
813 | 1775 | 1774 | 1023 | -1001 | -1000 | n | n |335 | 5067 | -5093
|s14 | 1852 | 1852 | 1017 | -1003 | -999 | n | n |349 | 5076 | -5.104
[sL5 | 1800 | 1800 | 1014 | -1004 | -1000 | n | n [385 | 5055 | -5.108
|s16 | 1786 | 1785 | 1011 | -1001 | -1000 | n | n |404 | 5066 | -5098
|s17 | 1788 | 1798 | 1011 | -1004 | -1000 | n | n |373 | 5083 | -5097
|s1s8 | 1785 | 1795 | 1018 | -1002 | -1002 | n | n | 32 | 5073 | -50%2
|st® | 1s01 | 1801 | 1016 | -1001 | -1002 | n | n [351 | 509 | -5104
[s110 | 1787 | 1798 | 1033 | -1001 | -1000 | n | n |347 | 5065 | -5.104
|s111 | 1785 | 1796 | 1012 | -1000 | -1002 | n | n |313 | 5057 | -5102
(112 |77 | 0 | 1013 | © | 0 [an [n | O |-0022 |-0006
[s1.13 | 1798 | 1798 | 1016 | -1002 | -1000 | n | n |343 | 5067 | -5.102
|s114 | 1793 | 1793 | 1016 | -1000 | -1000 | n | n |324 | 507 | -5095
|sL15 | 1799 | 1800 | 1015 | -1000 | -1001 | n | n |289 | 5068 | -5092
|sl1s | 1782 | 1783 | 1007 | -1002 | -1001 | n | n [377 | 5058 | -5099
[s117 | 1788 | 1798 | 1011 | -1001 | -999 | n | n [333 | 5104 | -5094
|s1L18 | 1786 | 1796 | 1017 | -1001 | -1002 | n | n |306 | 5078 | -5.103
[s1.19 | 1798 | 1797 | 1009 | -1000 | -1001 | n | n [347 | 507 | -5106
[s120 | 1803 | 1803 | 1014 | -1002 | -1000 | n | n |376 | 508 | -511
|s121 | 1789 | 1799 | 1010 | -1000 | -1002 | n | n |387 | 508 | -5l
|si22 | 1805 | 1805 | 1015 | -1000 | -1001 | n | n |331 | 5066 | -5114
[s123 | 1793 | 1793 | 1012 | -1000 | -1001 | n | n [312 | 5055 | -509
|s124 | 1789 | 1788 | 1018 | -1000 | -1002 | n | n |381 | 5047 | -5.105

Figure 14: Slow control page.

This page was generated with the help of DOC++

February 1, 2002 116

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

6.10.4

CNAF page

If one of the active equipment is a CAMAC based data collector, it will be possible to remotely
access CAMAC through this web based CAMAC page. The status of the connection is displayed
in the top right hand side corner of the window.

Execute ODE | Status | Help |
N AT R T Bt
E I I

Branch |0

Crate ll_

L

Clear inhibit
EBranch I':'
Crate Il

Figure 15: CAMAC command pages.

6.10.5

Message page

This page display by block of 100 lines the content of the Midas System log file starting with the
most recent messages. The Midas log file resides in the directory defined by the experiment.

This page was generated with the help of DOC++ February 1, 2002 117

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

| MIDAS experiment " hnmr2" Tue Dec 19 12:02:54 2000

CIDEil Status | Config | Helpl

hore100 |

Tue Dec 19 11:52:25 2000 [IMdarc] run saved in fle fhome'bamefonlineome 2 dlog0406 38 mer w39
Tue Dec 192 11:53:06 2000 [IMdarc] run saved in fle fhome'bamefonlinefame 2 dlog0406 38 mer w40
Tue Dec 19 11:53:27 2000 [MMdarc] run saved in file fhomebame/online/bome 2/ dlog/ 040638 mear w1
Tue Dec 19 11:54:08 2000 [Mdarc] run saved in file thomefbome/onlinebame 20 dlo g 040628 mer w2
Tue Dec 19 11:54:39 2000 [Mdarc] run saved in file thomefbome/onlinebame 20 dlo g 040628 mer w3
Tue Dec 19 11:55:10 2000 [Mdarc] run saved i file thomefbome/onlinebame 20 dlo g 040628 mer_ wdd
Tue Dec 19 11:5541 2000 [Mdarc] run saved i file thomefbome/onlinebame 20 dlo g 040628 mar_ w45
Tue Dec 19 11:56:12 2000 [Mdarc] run saved i file thomefbome/onlinebame 20 dlo g 040628 mar_ wdé
Tue Dec 19 11:26:43 2000 [Mdarc] run saved i file Shome'bnmeonlinefome ! dlog/ 040638 mar wd?
Tue Dec 19 11:57:14 2000 [Mdarc] run saved in file Shome'bome/onlinebome 2/ dlog/0406 38 masr w8
Tue Dec 19 11:57:45 2000 Mdarc] run saved n file thome/bome/onlnebome 2 dloe/ 040638 msr w49

Figure 16: Message page.

6.10.6

Elog page

The Electronic Log page show the most recent Log message recorded in the system. The top
buttons allows you to either Create/Edit/Reply/Query/Show a message.

| MIDAS Electronic Loghook | Experiment "chaos"
| Newl Editl Reply | Query | Last 10 entries Shift Check | Runlog | Status |

| Mext [Previous | Last | Check a category io browss only eniries from that category

|Entry date: Sun Wov 19 06:10:20 2000 |Run number: 13079

| " Author: rmeier | " Type: Shift Check
||_ Systern: General ||_ Subject:

1l Log beam channel : [X] adjusted Bl (.5 Gauss)

2 Target T-P Ok? : [X] MT running

3 All Chambers V-1 0k7? : [X]

4 DAQ : [¥]

5 Histograms, dotplots 0Ok? : [X]

Figure 17: main Elog page.

The format of the message log can be written in HTML format.

This page was generated with the help of DOC++

February 1, 2002 118

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

| MIDAS Electronic Lagbook |

Experiment "tuda"

| Mew ﬂl Rep\yl Gueryl Last 24 hours | Runlog | Status |

| Next | Previous | Last | Check @ categary to brawse anly entries from that category

[Entry date: Thu Sep 14 14:55:34 2000 R nuaber: 1
||_ Author: midas@midmes02.triumf.ca ||- Type: Info
| T System: General | I Subject DAQ
Hello TUDA folks,

¢ The main components of the DAQ for upcomming run iz "basically” installed.

* The VME crates contains the PPC and the CES CBDE210 CAWAC branch driver.

* This CBD is connected to two A2 CAWAC Crate Controllers.

* Acouisition for 1628 ADCs +4232 TDCs.
\ CRATE 1 | Modules
[Slot 01-16 [ADC 4418 Silena
ISkt 17-20 [TDC 3377 LeCrov or Command list
[Slot 21 [Cutput Register OR2027 SEN
[Slot 22-23 [Pattern Unit C212
[Slot 24-25 [Crate Controller 42 Jorway 71B Spec
\ CRATE 2 | Modules
[Slot 01 [Hex 24bit Scalers KCS3815
[Slet 22-23 [Branch terminator BHT-002/D SEC
[Slot 24-25 [Crate Controller 42 1302 BiRa system
System Status log:
\ Date C Sweeesyud [RSECCSlor rad done yed
|September 142000 [Optical 100BaseT fink to the Shack

Figure 18: HTML Elog message.

The runlog button display the content of the file runlog.txt which is expected to be in the
data directory specified by the ODB key /Logger/Data Dir. Regardless of its content, it will
be displayed in the web page. Its common uses is to append lines after every run. The task
appending this run information can be any of the midas application. Example is available in the
examples/experiment/analyzer.c which at each end-of-run (EOR) will write to the runlog.txt some

statistical informations.

When composing a new entry into the Elog, several fields are available to specify the nature
of the message i.e: Author, Type, System, Subject. Under Type and System a pulldown menu
provides multiple category. These categories are user definable through the odb under the tree
/Elog/Types, /Elog/Systems. The number of category is fixed to 20 maximum but any

remaining field can be left empty.

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002

119

6 Utilities

MIDAS File Display Experiment "lno"

|
| ElLog | Status |

Run# Date Tims Freg RF DI gtill H MC H Film H fec Shunt

40034 20001018 14:25:25 0.000000e+00 0.000 0.000001 0.000000 0.000000 O.000000 10 0.056076
40025 Z0001018 14:Z5:40 7.000000=+07 0.000 O.000002Z 0O.000000 O.000000 0O.000000 10 0.0583264
40036 20001018 16:25:55 7.000000e+07 0.000 0.000006 0O.000000 O.000000 O.000000 10 0.058364
40027 Z0001018 14:Z6:0% 7.000000=+07 0.000 O.000005 0O.000000 0O.000000 0O.000000 10 0.0583264
40038 20001018 16:26:23 7.000000e+07 0.000 0.00000& 0O.000000 0O.000000 O.000000 10 0.058364
29000 20001018 17:21:31 7.000000e+07 O.000 0O.000008 0.000000 0.102532% O0.000000 10 0.05950%9
39001 20001018 17:21:47 7.000000e+07 0.000 0.000005 0.000000 0.102539 0.000000 10 0.056076
29002 20001018 17:22:04 7.000000e+07 O0.000 0O.00000Z 0.000000 0.10253% O.000000 10 0.05a6076
39003 20001018 17:22:20 7.000000e+07 0.000 0.000002 0.000000 0.102539 0.000000 10 0.056076
29004 20001018 17:22:35 7.000000e+07 O0.000 0O.00000Z 0.000000 0.10253% O0.000000 10 0.05a6076
39000 20001018 17:46:25 7.000000e+07 0.000 0.000006 0.000000 O.102539 0.000000 1000 0.054%31
39001 20001018 18:05:11 7.000000e+07 O.000 0O.000007 0.000000 0.10253% O0.000000 1000 00057220
39002 20001018 16:21:56 7.000000e+07 0.000 0.000006 0.000000 O.102539 0.000000 1000 0.056076
29002 20001018 18:38:42 7.000000<+07 O0.000 0O.000008 0.000000 0.102532% 0.000000 1000 0.05607a
39004 20001018 16:55:27 7.000000e+07 0.000 0.000004 0.000000 O.104980 0.000000 1000 0.058364
29005 20001018 19:12:14 7.000000<+07 O0.000 0O.000006& 0O.000000 0.10253%9 O0.000000 1000 0.053787
39006 20001018 19%9:26:5% 7.000000e+07 0.000 0.000005 0.000000 O.104%80 0.000000 1000 0.053767
329007 20001018 19:45:44 7.000000<+07 0.000 0O.000005 0.000000 0.104%80 O0.000000 1000 00057220
39008 20001018 20:02:32 7.000000e+07 0.000 0.000004 0.000000 O.104980 0.000000 1000 0.062942
I900% 20001018 20:19:18 7.000000<+07 O.000 0O.000005 0.000000 0.104%80 O.000000 1000 00057220
39010 20001018 20:36:06 7.0000002+07 O.000 0O.000005 0.000000 0.107422 0.000000 1000 0.053787
39011 20001018 20:52:52 7.000000<+07 O.000 0O.000008 0.000000 0.107422 0.000000 1000 00057220
39012 20001018 21:09:32% 7.000000<+07 O.000 0O.000006& 0O.000000 0.107422 0.000000 1000 0.057220

Figure 19: Elog page, Runlog display.

6.10.7

Program page

This page present the current active list of the task attached to the given experiment. On the
right hand side a dedicated button allows to stop the program which is equivalent to the ODBedit
command odbedit> sh <task name>.

The task name hyperlink pops a new window pointing to the ODB section related to that
program. The ODB structure for each program permit to apply alarm on the task presence
condition and automatic spawning at either the begining or the end of a run.

6.10.8

History page

This page reflects the History System settings. It lists on the top of the page the possible pannels
defined in the ODB. A serie of buttons defines the full time scale of the graph and the ”<” ”>”
”>>” buttons permit the shifting of the graph in the time direction. The time unit is in minutes.
The main graph will always display all the defined channels but clicking on the boxed channel
names, single graph will supersede the page.

Elog message with the current history display as attachement for reference is possible using
the Elog button.

This page was generated with the help of DOC++

February 1, 2002 120

http:/ /www. linuxsupportline.com/~doc-+-+

Terminal

o s s e B e s s e s s o s s e o s s Y o o |

.00s103
006027
. 00s027
006027
.00s027
006256
. 008103
. 006103
. 008103
. 006103
.00al7e
. 006332
.00Bz56
. 006179
. 008103
. 006332
. 008332
. 006179
Ld0BezZ56
. 006332
. 005874
006256
. 006332

6 Utilities

| MIDAS Electronic Loghook | Experiment " chaos"
‘ Submit |
Entry date: Tue Dec 19 12:08:13 2000 Fun number: |1339?

Author: I Type: | Routine -

:Routine

lﬁ . li Shift summary
Systemy | Genera — Subject Minor error

Severe errar

Text: Fix

Eiatetcmr_ Info - l
ectronics Modification

Target
Beamline

Cormplaints
Reply
Alarm

Test

Other

[

[Submit as AT text

Enter attachment filename(s) or ODB tree(s), use "' as an ODE directory separator:

Attachment1: | Browse... |
Attachment?2: | Browse... |
Attachment3: | Browse... |

Figure 20: Elog page, New Elog entry form.

6.10.9

Custom page

The Custom page is available from the Midas version 1.8.3.

This page reflects the html content of a given ODB key under the /Custom/ key. If keys are
defined in the ODB under the /Custom/ the name of the key will appear in the main status page
as the Alias keys. By clicking on the Custom page name, the content of the /Custom/<page>
is interpreted as html content.

The access to the ODB field is then possible using specific HTML tags:

e <odb src="0db field”> Display ODB field.
e <odb src="0db field” edit=1> Display and Editable ODB field.

e <form method="GET” action="http://hostname.domain:port/CS/<Custom page key>">
Define method for key access.

This page was generated with the help of DOC++

February 1, 2002 121

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

| MIDAS experiment “lmo” | Tue Dec 19 13:02:202000
‘ Alarms | Status |

|Prugram |Running on host |Alarm class |Auturestart

DDBEdit. - Ne Stop ODBEdit |

Speaker _‘ - Mo ‘ Stop Speaker |
M Status _‘ ‘ Stop MStatus |
‘ Stap tnoRC |
| =

an | anaar

| Findl Create I Delete I Alarms I Programs I Status I Help I
| Create Elog from this page

| / Programs / lmoRC /

| Key | Value
|Auto start |g

|Auto stop |g

|Auto restart |g

|Required |g

|Start command |@m

\Alarm Class \(empty)

(Checlked last 0 (0x0)

|Alarm count |O_(M

Watchdog timeout 110000 (0x2710)

Figure 21: Program page.

o <meta http-equiv="Refresh” content="60"> Standard page refresh in second.

e <input type=submit name=cmd value=<Midas_page>> Define button for accessing Midas
web pages. Valid values are the standard midas buttons (Start, Pause, Resume, Stop, ODB,
Elog, Alarms, History, Programs, etc).

e Refer-
ence to an history page.

The insertion of a new Custom page requires the following steps:

1. Create an initial html file using your prefered HTML editor.
2. Insert the ODB HTML tags at your wish.

3. Invoke ODBedit, create the Custom directory, import the html file.

e Example of loading the file mcustom.html into odb.

This page was generated with the help of DOC++

February 1, 2002 122

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

MIDAS experiment "e614" Mon Dec 18 14:23:45 2000

‘@I ‘ Alarmsl Statusl

Faned: ALL Trisgerrate PA hp

EEEEEEEENE

p

Sma]ll ‘ CreataELogl ‘ Conﬁgl

26;—+H3HP[0]

#H [manpris ym’“"”M:;;*“;::“NW““““wmﬁwn”ﬁwwmmh I

2lfimwer] e e
W

28— [H3HPL3]
15 [H3HPL4]

L L B L L B B B L L N Bl B
-7 65 608 =55 —50 —45 —48 -325 28 -25 —20 =il5 —18 -5

Figure 22: History page.

Tue> odbedit
[local:midas:Stopped] />1s

System

Programs

Experiment

Logger

Runinfo

Alarms

Equipment
[local:midas:Stopped] />mkdir Custom
[local:midas:Stopped]/>cd Custom/
[local:midas:Stopped] /Custom>import mcustom.html
Key name: Test&
[local:midas:Stopped] /Custom>

e Once the file is load into ODB, you can ONLY edit it through the web (as long as the
mhttpd is active). Clicking on the ODB(button) ... Custom(Key) ... Edit(Hyperlink
at the bottom of the key). The Custom page can also be exported back to a ASCII file
using the ODBedit command ”export”

Tue> odbedit

[local:midas:Stopped] />cd Custom/
[local:midas:Stopped] /Custom>export test&
File name: mcustom.html
[local:midas:Stopped] /Custom>

e The character ”&” (will be changed to ”#”) at the end of the custom key name forces the

This page was generated with the help of DOC++

February 1, 2002 123

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

| PIBETA experiment | Custom display

ODEil ELDgl Alarmsl Fragrams | Histnryl

Run #42708 |MHC 1.78916 | Trigger rate 67.5 |BO/MHC ratio 12.6495 |BE: 1

FiBeta

37628~
{ [piseta] “

37610

37600

37590

37580

37570

37560
T LA L L L L L B L L L L LY L L L B L L L B BN B
-24 -2z -8 -18 -1& -14 -1z -8 -8 -& -4 -z @

Figure 23: Custom web page with history graph.

page to be open within the current frame. If this character is omitted, the page will be
spawned into a new frame (default).

e If the custom page name is set to Status (no ”&”) it will become the default midas Web
page!

e html code example mcustom.html

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type'" content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Mozilla/4.76 [en] (Windows NT 5.0; U) [Netscape]">
<meta name="Author" content="Pierre-Andr Amaudruz">
<title>Set value</title>
</head>
<body text="#000000" bgcolor="#FFFFCC" link="#FF0000" v1ink="#800080" alink="#0000FF">
<form method="GET" action="http://host.domain:port/CS/WebLtno&">
<input type=hidden name=exp value="ltno">
<center><table CELLSPACING=0 CELLPADDING=0 COLS=3 WIDTH="100%" BGCOLOR="#99FF99" >
<caption>LTNO
Custom Web Page</caption>
<tr BGCOLOR="#FFCC99">
<td>Actions:
<input type=submit name=cmd value=Status>
<input type=submit name=cmd value=Start>
<input type=submit name=cmd value=Stop>

This page was generated with the help of DOC++

February 1, 2002 124

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

MIDAS experiment "pibeta" | Tue Sep 4 20:02:11 2001

| Find | Create | Delete | Alarms | Programs | Status | Help

| Create Elog from this page

| { Custom /

| Key | Value

<html>

<head><meta http-egquiv="Refresh" content="g0">

<title>PIBETA status</titler</head:>

<body><form wethod="GET" action="http:// /... .pEi.ch/C3/0verviews™:

<table border=3 cellpadding=2>

<trr<th colspan=3 bgoolor=#L0AO0FF>PIBETL experiment<th colspan=3 bgcoolor=gL0A0FF:>Custom display
</ftr>

<trr<td colspan=6 bgoolor=#C0C0C0>

<input type=submit hname=cid value=0DE>

<input type=submit name=cid wvalue=ELog:>

<input type=submit namwe=cird value=ilarms>

<input type=submit name=cid value=Programs:>

<input type=submit name=cid value=History:>

<ftr>

Owerviewd, <tr align=center>
<td>Run #<odb sre="/runinfo/run number®:>
<td>MHC <odb src="/hlias/Rates/MHC">
<td>Trigger rate <odb src="/Alias/Rates/Trigger™:>
<td colspan=1>B0/MHC ratio <odb sre="/Alias/Ratios/BO-MHC":
<td colspan=2:>BE: <odb sro="/Equipment/EBeawlinesVariables/Demand[0] " edit=1>
</tr>
<Lrrx<td colspan=6x

<ftE>
</tablex
</body></html>
Edit
<html>
<head><meta http-egquiv="Refresh" content="60">
<title>PIBETA status</titler</head>

Figure 24: ODB /Custom/ html field.
<td>

<input type=submit name=cmd value=0DB>
<input type=submit name=cmd value=History>
<input type=submit name=cmd value=Elog></td>
</td>

<td>
<div align=right>LTNO experiment </div>
</td>
</tr>

<tr>

<td>Cryostat section:

LN2 Bath Level : <odb src="/equipment/cryostat/variables/measured[12]">

Run# : <odb src="/runinfo/run number" edit=1>

Run#: <odb src="/runinfo/run number">

Run#: <odb src="/runinfo/run number"></td>

<td WIDTH="100%" BGCOLOR="#009900">RF source section:

This page was generated with the help of DOC++

February 1, 2002 125

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

Run#: <odb src="/runinfo/run number">

Run#: <odb src="/runinfo/run number">

Run#: <odb src="/runinfo/run number">

Run#: <odb src="/runinfo/run number"></td>

<td WIDTH="50%" BGCOLOR="#FF6600">Run section:

Start Time: <odb src="/runinfo/start time">

Stop Time: <odb src="/runinfo/stop time">

Run#: <odb src="/runinfo/run number">

Run#: <odb src="/runinfo/run number"></td>

</tr>

<tr>

<td BGCOLOR="#CC6600">Sucon magnet section:

Run#: <odb src="/runinfo/run number">

Run#: <odb src="/runinfo/run number">

Run#: <odb src="/runinfo/run number">

Run#: <odb src="/runinfo/run number"></td>

<td BGCOLOR="#FFCC33">Scalers section:

Beam Current: <odb src="/equipment/epics/variables/measured[10]">

Run#: <odb src="/runinfo/run number">

Run#: <odb src="/runinfo/run number">

Run#: <odb src="/runinfo/run number"></td>

<td BGCOLOR="#66FFFF">Polarity section:

Run#: <odb src="/runinfo/run number">

Run#: <odb src="/runinfo/run number">

Run#: <odb src="/runinfo/run number">

Run#: <odb src="/runinfo/run number"></td>
</tr>

</table></center>

<i>

 LTNO help</i>
</body>

</html>

6.11

elog task

Electronic LogBook utility.

Electronic Log utility. Submit full Elog entry to the specified Elog port.

This page was generated with the help of DOC++

February 1, 2002 126

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

LTNO Custom Web Page
E‘I Histary E&J

LTINO experiment

Actions: Status J Start‘ Stop]

Cryostat section:
LIM2 Bath Level : 0
Fung# 61366
Run#: 61366
Run#: 61366

Scalers section: Polarity section:
Beam Current: -1.1754%e-338 Rund#: 61366
Rurd: 61366 Run#: f1366
Rund#: 61366 Run#: A1366

Run#: 61366 Run#: 61366
Meterdis Bridge
" nsrian b 799—; W‘
. 00 [Eenperature351 .
E] [tenperature3r6] |
] a00.] tenperaturedlb] >
3 ol
s/
299—5
108
AN B LAY) RS RS RASLY RS KAL) AL RAAAN R
=12 =ll::=18 =9 -8 =T -5 -5 -4 -3 -2 =1,
LTNG ke,
Figure 25: web page produced by mcustom.html.
e Arguments
-h : help
-h hostname : host name
-1 exptname or logbook
-u username password
-f <attachment> : up to 10 files.
— -a <attribute>=<value> : up to 20 attributes. The attribute ” Author=...” must at least

be present for submission of Elog.

— -m <textfile> — text>
Arguments with blanks must be enclosed in quotes. The elog message can either be
submitted on the command line or in a file with the -m flag. Multiple attributes and
attachments can be supplied.

e Usage
By default the attributes are ” Author”, ” Type”, ”System” and ”Subject”. The ” Author”
attribute has to be present in the elog command in order to successfully submit the message.
If multiple attributes are required append before ”text” field the full specification of the
attribute. In case of multiple attachement, only one ”-f” is required followed by up to 10 file
names.

>elog -h myhost -p 8081 -1 myexpt -a author=pierre "Just a elog message"
>elog -h myhost -p 8081 -1 myexpt -a author=pierre -f file2attach.txt \
"Just this message with an attachement"
>elog -h myhost -p 8081 -1 myexpt -a author=pierre -m file_containing_the_message.txt

This page was generated with the help of DOC++ February 1, 2002 127

http:/ /www. linuxsupportline.com/~doc-+-+

Utilities

>elog -h myhost -p 8081 -1 myexpt -a Author=pierre -a Type=routine -a system=general \

—-a Subject="my test" "A full Elog message"

e Remarks

1. ..

6.12

mhist task

History data utility.

History data retriever.

e Arguments

-h
-e Event ID

-v Variable Name :

: help
: specify event ID

specify variable name for given Event ID

-i Index : index of variables which are arrays
-t Interval : minimum interval in sec. between two displayed records
-h Hours : display between some hours ago and now
-d Days : display between some days ago and now
-f File : specify history file explicitly
-s Start date : specify start date DDMMYY[.HHMM][SS]]
-p End date : specify end date DDMMYY[.HHMM[SS]]
-1 : list available events and variables
-b : display time stamp in decimal format
-z : History directory (def: cwd).
e Usage

o Examples

—--- All variables of event ID 9 during last hour with at least 5 minutes interval.
> mhist

Available events:

ID 9: Target

ID 5: CHV

ID 6: B12Y

ID 20: System

Select event ID: 9

Available variables:
0: Time

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 128

6 Utilities

Cryostat vacuum
Heat Pipe pressure
Target pressure
Target temperature
Shield temperature
Diode temperature

O g WN

Select variable (0..6,-1 for all): -1
How many hours: 1
Interval [sec]l: 300

Date Time Cryostat vacuum Heat Pipe pressure Target pressure Target temperature Shield temperat
Jun 19 10:26:23 2000 104444 4.614 23.16 -0.498 22.931 82.163 40
Jun 19 10:31:24 2000 104956 4.602 23.16 -0.498 22.892 82.108 40
Jun 19 10:36:24 2000 106509 4.597 23.099 -0.498 22.892 82.126 40
Jun 19 10:41:33 2000 110021 .692 23.16 -0.498 22.856 82.08 40
Jun 19 10:46:40 2000 110534 4.597 23.147 -0.498 22.892 82.117 40
Jun 19 10:51:44 2000 111046 4.622 23.172 -0.498 22.907 82.117 40
Jun 19 10:56:47 2000 1115568 4.617 23.086 -0.498 22.892 82.117 40
Jun 19 11:01:56 2000 112009 4.624 23.208 -0.498 22.892 82.117 40
Jun 19 11:07:00 2000 112521 .629 23.172 -0.498 22.896 82.099 40
Jun 19 11:12:05 2000 113034 4.639 23.074 -0.498 22.896 82.117 40
Jun 19 11:17:09 2000 113546 4.644 23.172 -0.498 22.892 82.126 40
Jun 19 11:22:15 2000 114059 4.661 23.16 -0.498 22.888 82.099 40

I R L

— Single variable ”I-WC1+_Anode” of event 5 every hour over the full April 24/2000.

mhist -e 5 -v "I-WC1+_Anode" -t 3600 -s 240400 -p 250400
Apr 24 00:00:09 2000 160

Apr 24 01:00:12 2000 160

Apr 24 02:00:13 2000 160

Apr 24 03:00:14 2000 160

Apr 24 04:00:21 2000 180

Apr 24 05:00:26 2000 0

Apr 24 06:00:31 2000 160

Apr 24 07:00:37 2000 160

Apr 24 08:00:40 2000 160

Apr 24 09:00:49 2000 160

Apr 24 10:00:52 2000 160

Apr 24 11:01:01 2000 160

Apr 24 12:01:03 2000 160

Apr 24 13:01:03 2000 0

Apr 24 14:01:04 2000 0

Apr 24 15:01:05 2000 -20

Apr 24 16:01:11 2000 0

Apr 24 17:01:14 2000 0

Apr 24 18:01:19 2000 -20

Apr 24 19:01:19 2000
Apr 24 20:01:21 2000
Apr 24 21:01:23 2000
Apr 24 22:01:32 2000
Apr 24 23:01:39 2000

O O OO O

e Remarks

1. ..

This page was generated with the help of DOC++

February 1, 2002 129

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

e Example History data can be retrieved and display through the Midas web page (see
mhttpd task).

 MIDAS experiment "trinat" Sat Aug 5 11:05:35 2000
‘ CDE | Alarms | Status |
‘Pcme.f : ALL Trigger rate Epics
_10m | 1h| 3n| 120 24n]| 3d| 7d| 4 | Large | Small | Create ELog | Config |
Trigger rate
1681 [Trigger kB per sec. | o
158+
148
139—-
128—_
118—_
IBB—-
98—_
88—_
78]
69—-
Sa—
%LMNMMVWWNWWW\MWWWWMWWW‘
39—-
28—_
18—-
a ""I""I""I""l""l""|""I""I""I""l""I""I""I""l""l""|""|""|""|""
-1 —a.9 8.2 —8.7 —8.5 —8.5 —8.4 —8.3 —8.2 —a.1 =]
Figure 26: Midas Web History display.
6.13

mchart task

ODB data for stripchart utility.
mchart is a periodic data retriever of a specific path in the ODB which can be used in conjunction
with a stripchart graphic program.

e In the first of two step procedure, a specific path in the ODB can be scanned for composing
a configuration file by extracting all numerical data references file.conf.

This page was generated with the help of DOC++

February 1, 2002 130

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

e In the second step the mchart will produce at fix time interval a refreshed data file file
containing the values of the numerical data specified in the configuration file. This file is
then available for a stripchart program to be used for chart recording type of graph.

Two possible stripchart available are:

e gstripchart The configuration file generated by mchart is compatible with the GNU
stripchart which permit sofisticated data equation manipulation. In the other hand, the
data display is not very fency and provide just a basic chart recorder.

e stripchart.tcl This tcl/tk application written by Gertjan Hofman provides a far better
graphical chart recorder display tool, it also permits history save-set display, but the equation
scheme is not implemented.

e Arguments

-h : help
-h hostname : host name.
-e exptname : experiment name.
-D : start program as a daemon.
-u time : data update periodicity (def:5s).
-f file : file name (+.conf: if using existing file).
-q ODBpath : ODB tree path for extraction of the variables.
-¢ : ONLY creates the configuration file for later use.
-b lower_value : sets general lower limit for all variables.
-t upper_value : sets general upper limit for all variables.
-g : spawn the graphical stripchart if available.
-gg : force the use of gstripchart for graphic.
-gh : force the use of stripchart (tcl/tk) for graphic.
e Usage

The configuration contains an entry for each variable found under the ODBpath requested.
The format is described in the gstripchart documentation.

Once the configuration file has been created, it is possible to apply any valid operation
(equation) to the parameters of the file following the gstripchart syntax.

In the case of the use of the stripchart from G.Hofman, only the ”filename”, ”pattern”,

?maximum”, "minimum” fields are used.

When using mchart with -D Argument, it is necessary to have the MCHART_DIR defined
in order to allow the daemon to find the location of the configuration and data files (see
Environment variables).

chaos:~/chart> more trigger.conf

#Equipment: >/equipment/kos_trigger/statistics
menu: on

slider: on

type: gtk

minor_ticks: 12

major_ticks: 6

chart-interval: 1.000

This page was generated with the help of DOC++

February 1, 2002 131

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

chart-filter: 0.500
slider-interval: 0.200
slider-filter: 0.200
begin: Events_sent
filename: /home/chaos/chart/trigger
fields: 2
pattern: Events_sent
equation: $2
color: blue
maximum: 1083540.00
minimum: 270885.00
id_char: 1
end: Events_sent
begin: Events_per_sec.
filename: /home/chaos/chart/trigger
fields: 2
pattern: Events_per_sec.
equation: $2
color: red
maximum: 1305.56
minimum: 326.39
id_char: 1
end: Events_per_sec.
begin: kBytes_per_sec.
filename: /home/chaos/chart/trigger
fields: 2
pattern: kBytes_per_sec.
equation: $2
color: brown
maximum: 898.46
minimum: 224.61
id_char: 1
end: kBytes_per_sec.

A second file (data file) will be updated a fixed interval by the mchart utility.

chaos:”/chart> more trigger
Events_sent 6.620470e+05
Events_per_sec. 6.463608e+02
kBytes_per_sec. 4.424778e+02

e Examples
— Creation with ODBpath being one array and one element of 2 sitting under variables/:

chaos:”/chart> mchart -f chvv -q /equipment/chv/variables/chvv -c
chaos:”/chart> 1s -1 chvv*

-rw-r--r-- 1 chaos users 474 Apr 18 14:37 chvv
-rw-r--r-- 1 chaos users 4656 Apr 18 14:37 chvv.conf

— Creation with ODBpath of all the sub-keys sittings in variables:

This page was generated with the help of DOC++

February 1, 2002 132

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

mchart -e myexpt -h myhost -f chv -q /equipment/chv/variables -c

— Creation and running in debug:

chaos:”/chart> mchart -f chv -q /equipment/chv/variables -d
CHVV : size:68

#name:17 #Values:17

CHVI : size:68

— Running a pre-existing conf file (chv.conf) debug:

chaos:~/chart> mchart -f chv.conf -d
CHVV : size:68

#name: 17 #Values:17

CHVI : size:68

#name:17 #Values:17

— Running a pre-existing configuration file and spawning gstripchart:

chaos:”/chart> mchart -f chv.conf -gg

spawning graph with gstripchart -g 500x200-200-800 -f /home/chaos/chart/chv.conf ...

— Running a pre-existing configuration file and spawning stripchart, this will work only
if Tcl/Tk and bltwish packages are installed and the stripchart.tcl has been installed
through the Midas Makefile.

chaos:”/chart> mchart -f chv.conf -gh
spawning graph with stripchart /home/chaos/chart/chv.conf ...

6.14

mtape task

Tape utility.

Tape manipulation utility.

e Arguments
-h : help
-h hostname : host name
-e exptname : experiment name
-D : start program as a daemon

e Usage

e Examples

This page was generated with the help of DOC++

February 1, 2002 133

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

>mtape

6.15

dio task

Frontend or menaf Direct 10 to CAMAC launcher.

Direct I/O task provider (LINUX).

If no particular Linux driver is installed for the CAMAC access, the dio program will allows
you to gain access to the I/O ports to which the CAMAC interface card is connected to.

e Arguments
application name : Program name requiring I/O permission.

e Usage
>dio miocnaf

>dio frontend

e Remarks

1. This "hacking” utility restricts the access to a range of I/O port from 0x200 to 0x3FF.

2. As this mode of I/O access by-passes the driver (if any), concurrent access to the same
I/O port may produce unexpected result and in the worth case freeze the computer.
It is therefore important to ensure to run one and only one dio application to a given
port in order to prevent potential hangup problem.

3. Interrupt handling, DMA capabilities of the interface will not be accessible under this
mode of operation.

6.16

stripchart.tcl

Tcl/Tk history/ODB data stripchart display.

Graphical stripchart data display. Operates on mchart task data or on Midas history save-set
files. (see also History System).

This page was generated with the help of DOC++

February 1, 2002 134

http:/ /www. linuxsupportline.com/~doc-+-+

6 Utilities

e Arguments

-mhist : start stripchart for Midas history data.

e Usage

o Examples

> stripchart.tcl -h

Usage: stripchart <-options> <config-file>
-mhist (look at history file -default)
-dmhist debug mhist

-debug debug stripchart

config_file: see mchart

> stripchart.tcl -debug
> stripchart.tcl

5 _loj x|

File Help

ME=E]

Faram |:urren'|TDp |
2} PC_diff 140, 281 =10
He_Dif_ - 876 000

PC_diff|He_Diff_J.-‘-‘«tmnsphere!F'C_F'umpl Atmosphere 755K 151K ress!

E— IVaIue PC_Pump 216, 438.

ldentifier PC_diff
Calar hlue
Filename junk.
FPattern PC_diff
Ecuation Fe

Expected range 703 .. 281,
Displayed range 703 .. 281,
Current value 140.

I~ Active

]

<:9 Ok ‘ of apply & Cancel ‘ 2 Help |

Figure 27: gstripchart display with parameters and data pop-up

This page was generated with the help of DOCH+
htp://www.linuxsupportline.com/~doc-+ February 1, 2002

6 Utilities

gl 1 "*iqqm"ji*?uif*. f?f-“-er*ﬁ' i) }iing Hi I 'ﬂ‘ ..’

i m\ﬁ i W iW lW* b Wj'd'l'r ha t[T‘
I ¥ |

exit help detail-single detail-all scrull time mhist mhist
i
_/ / /
plus15_crateZ navy eS| S ey
plus5_crate? yellow 100 5 | Today’s MHIST Mode of Operation;
minusZ_crateZ orange <% & mins Open old history file mhist : Display of hiStOF}' files.
minuss_crateZ red “* 30 mins Same file, New event update * Real time dlSp'By used
minus1s_cratez cyan % 1 hour Set history -file path with mchart.
plus15_cratel DarkGreen “~ 10 hours
pluss_cratel blue3 24 hours

minusZ_cratel brown
minuss_cratel green
minus1a_cratel goldenrod

Figure 28: stripchart.tcl mhist mode: main window with pull-downs.

6.17

hvedit task

HYV or Slow control Windows application editor.

High Voltage editor, graphical interface to the Slow Control System (NT).

e Arguments

-h : help
-h hostname : host name

-e exptname : experiment name

This page was generated with the help of DOC++

http://www.linuxsupportline.com/~doc-+-+ February 1, 2002 136

Utilities

& D crated

= 5

* oom ubifd kot mouie drog

el PRy b |
o= | MG
Anfo-Ral p Iﬂm__
gy | | PR
T T T T T T T 1 sl iy
91233 “?I{ICEQZB 2z01 1240 ‘B.IN\B:IZ 21 214E o R M gt T 291|I|r-|n T 9|‘|||'||‘||) T m‘:[_“w n_!l?lnap'l T mwl'(
Zoorm using mouse dragging. R e LT
[| K
“mScale J o -~
Ve - o~ A PR
oy 1 s -
e P52 | 4 -
Abtesaaie || =2 e i
id bl AR RA LA S| e
fognale o AMAASRS AT |'|I "|-I'." it '|||"| fi i - - - - : - - : |
——— 5233 N i I,-..' iy Illl l)l I 'lll.ll '|I|||' AR BARRAE M ihed SRASIANR DeqSodd aReRGASS (R0
T . l',l Iln’ IS | | ——Eusicinid e
o S II BrtoToal e
Fabzate || 110000 -] 4 s
as_nlm.wn aa_nluam aa_nlusea R ___r-f NP M
R &) REEY
o |
! L EIREL Y p mllllbhﬁ : ﬂl.||lrl:|: i ﬂﬂlil:ﬂﬂ ﬂll!llﬂ#.‘- ' ﬂd!l"
(] W -
fstosca e || 110000 Ir'll I‘\.L I."J l& I =TT e
Retcale T / 1 f. h——____! LR
InFocke Ip f.,-' ‘Ll Jl,—" \ = Aicate || 110000 - ”__/"“- s N i
Warczoay | | 1036E0 ; E e el | R =
&1 e '\;z/) I\/'l/\\' f’ - e
sl |
2611m0E 23011040 20110843 | Dii20i4a 09420820 051213 WD XNICW DI 20 1203 | 62
Rescale button Detail-all selection from main window:
- Display 4 graphs per page.
- Page selection on top of window.
Figure 29: stripchart.tcl: Channel selection with zoom option.
-D : start program as a daemon

e Usage To control the high voltage system, the program HVEdit can be used under Windows
95/NT. It can be used to set channels, save and load values from disk and print them. The
program can be started several times even on different computers. Since they are all linked
to the same ODB arrays, the demand and measured values are consistent between them at
any time. HVEdit is started from the command line:

e Examples

>hvedit

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 137

Utilities

+A midas stipchart: >/equipment

=101 x|

exit help detail-single detail-all scroll time

Autoseale || _gom

ReScale

Hil

InfosHelp

Hardtepy | | g gato2

close

£

Cmewoome WETE]
— nitius2 _crate? I
-0.091m I/ﬁ/
[! T L T T i T 1
11:41 11:43 11:45 1146 11:48 1150

¥ minus5_crate2

9 [=1E3

AutoScale || 707012

Rescale || -p7014

Hil

InforHe lp || o701
HardCopy
-0.7013
close

— minusS_crate2 I

e

T 1 T U T u T T T
11:41 1143 11:45 11:48 1148

1150

Figure 30: stripchart.tcl: Online data, running in conjunction with mchart.

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002

138

7 New application

7

New application

List of application examples.

New applications can be build using the examples given under midas/ezamples/...

e midas / examples / lowlevel / produce.c A simple data producer. It simply con-
nects to a buffer on the local machine (not possible under MS-DOS) or to a remote host
which has the server program running. An event-id can be selected (e.g. 1 or 2 or so), a host
(either enter RETURN for the local host or the IP name for a remote host), an event size
(1 Byte up to 64k) and a cache size. The cache is installed on the machine where the buffer
is created and limits the access to the buffer by caching the data. This avoids numerous
semaphore calls and speeds up data transfer expecially for small event sizes. The producer
just generates dummy events until it is interrupted via Ctrl-C.

« midas / examples / lowlevel / consume.cC A simple consumer getting data from a
local or remote host and checking the data inegrety. First, the first and last word in the
events is checked in order to detect overwritten data, then the serial number of the event is
checked in order to detect lost events. By specifying different id’s, several types of events can
be passed through the same buffer although this is not advisable for high rate applications.

« midas / examples / lowlevel / rpc_test.c A simple program to test the RPC layer
in MIDAS. It connects to a MIDAS server and executes a test routine on the server.

« midas/examples/lowlevel /rpc_srvr.c, rpc_clnt.c This is a standalone RPC
server and client which do not use any midas functionality. This can be used to implement
simple RPC client/server programs which have nothing to do with midas. This example
won’t works on VxWorks.

« midas / examples / basic / Minirc.c Mini-Runcontrol program which can be used to
start and stop a run. Usually this is done inside odbedit. Provides example for transition
request.

« midas / examples / basic / minife.c Mini-Frontend showing the basic concept of a
MIDAS frontend. It connects to an experiment and and waits for a run start command via
an RPC call. When a run is started, it sends empty events with ID 1. Normally, the mfe.c
frontend framework is used to build a frontend. This program is more evolved and provide
internal structure of the frontend scheduler with RPC server capability. It is recommended
for ”expert”.

e midas / examples / basic / odb_test.c A simple test program which shows basic
ODB operation. It read a value from the online database (the run number), increments
it and writes it back to the ODB. Then it opens a ”hot link” to that value and enters an
infinite loop. Whenever the run number gets changed by someone else (like from ODBEdit),
the local function run_number_changes is called automatically.

« midas/examples/basic/analyzer.c Very basic analyzer which requests two event
types (trigger event ID 1 and scaler event ID 2). It simply prints a notification when one
of the events is received. This program has to becompiles together with mana.c to work

properly.

This page was generated with the help of DOC++

February 1, 2002 139

http:/ /www. linuxsupportline.com/~doc-+-+

7 New application

e midas / examples / basic / msgdump.c Displays all messages produced via the
cm_msg call in other clients.

« midas/examples/macro/frontend.c Shows the use of macro definition (mi-
das_macro.h) in order to code frontend in a higher level of language.

« midas / examples / miniexp / ... This directory contains an example of a MIDAS
experiment. It contains an even definition for a trigger event (ID 1) with eight ADC and
TDC channels and a scaler event (ID 2) also with eight channels. The frontend program
generates both types of events and fills them with data. The data is stored in the events in
MIDAS bank format which is very similar to BOS/YBOS banks. The analyzer uses a single
user routine to recover these banks from the events and analyzes them, then fills them into
histograms and N-tuples. Refer to the readme.tzt file.

e midas / examples / slowcont / frontend.c This file provide a complete example of
a slow control frontend containing 16 channels of High Voltage, 2 general purpose Input
signal and 2 general purpose output signal.

This page was generated with the help of DOC++

February 1, 2002 140

http:/ /www. linuxsupportline.com/~doc-+-+

8 appendix A: Data format

8

appendix A: Data format

Names
8.1 Midas format e 141
8.2 YBOS format e 142

Midas supports two differents data format so far. A possible new candidate would be the NeXus
format, but presently no implementation has been developed.

1. MIDAS format
2. YBOS format

8.1

Midas format

Special formats are used in MIDAS for the event header, banks and when writing to disk or tape.
This appendix explains these formats in detail. Each event carries a 16-byte header. The header
is generated by the front-end with the bm_compose_event() routine and used by the consumers to
distinguish between different events. The header is defined in the EVENT_HEADER structure in
midas.h. It has following structure:

The event ID describes the type of event. Usually 1 is used for trigger events, 2 for scaler
events, 3 for HV events etc. The trigger mask can be used to describe the sub-type of an event.
A trigger event can have different trigger sources like ”physics event”, ” calibration event”, ”clock
event”. These trigger sources are usually read in by the front-end in a pattern unit. Consumers
can request events with a specific trigger mask. The serial number starts at one and is incremented
by the front-end for each event. The time stamp is written by the front-end before an event is
read out. It uses the time() function which returns the time in seconds since 1.1.1970 00:00:00
UTC. The data size contains the number of bytes that follow the event header. The data area of
the event can contain information in any user format, although only certain formats are supported
when events are copied to the ODB or written by the logger in ASCII format. Event headers are
always kept in the byte ordering of the local machine. If events are sent over the network between
computers with different byte ordering, the event header is swapped automatically, but not the
event contents.

Bank Format Events in MIDAS format contain ”MIDAS banks”. A bank is a substructure of
an event and can contain one type of data, either a single value or an array of values. Banks
have a name of exactly four characters, which are treated, as a bank ID. Banks in an event
consist of a global bank header and an individual bank header for each bank. Following
picture shows a MIDAS event containing banks:

This page was generated with the help of DOC++

February 1, 2002 141

http:/ /www. linuxsupportline.com/~doc-+-+

8 appendix A: Data format

Event ID |Trigger Ilask

Serial number (1)

- EVENT HEADEE
Time Stamp -

Event Drata Size (bytes)

All Bank Size (bytes)
BAWE _HEADEE
Flags =

///fl\

Bank Mame [4char] Barlk Mame [4char]
Type ‘ Barik size (bites) Type
| Dat.a | B Bank size (bytes) B 37
‘ Data . ‘
| Erata . |
Bank Name [4char] | Data . . |
Type ‘ Bank size (hytes) Bank Mame [4char]
| Data ... | Type
Bank size (bytes)

Dhata ... ‘

Figure 31: Event and bank headers with data block.

The ”data size total” is the size in bytes of all bank headers and bank data. Flags are
currently not used. The bank header contains four characters as identification, a bank type
that is one of the TID _xxx values defined in midas.h, and the data size in bytes. If the byte
ordering of the contents of a complete event has to be swapped, the routine bk_swap() can
be used.

Tape Format Events are written to disk files without any reformatting. For tapes, a fixed block
size is used. The block size TAPE_BUFFER_SIZE is defined in midas.h and usually 32kB.
Three special events are produced by the system. A begin-of-run (BOR) and end-of-run
(EOR) event is produced which contains an ASCII dump of the ODB in its data area. Their
IDs is 0x8000 (BOR) and 0x8001 (EOR). A message event (ID 0x8002) is created if Log
messages is enabled in the logger channel setting. The message is contained in the data area
as an ASCII string. The BOR event has the number MIDAS MAGIC (0x494d or 'MI’) as
the trigger mask and the current run number as the serial number. A tape can therefore be
identified as a MIDAS formatted tape. The routine tape_copy() in the utility mtape.c is an
example of how to read a tape in MIDAS format.

8.2

YBOS format

This page was generated with the help of DOC++

February 1, 2002 142

http:/ /www. linuxsupportline.com/~doc-+-+

8 appendix A: Data format

As mentioned earlier the YBOS documentation is available at the following URL address: ybos
Originally YBOS is a collection of FORTRAN functions which facilitate the manipulation of
group of data. It also describes a mode of encoding/storing data in a organized way. YBOS
defines specific ways for:

1. Gathering related data (bank structure).
2. Gathering banks structure (logical record).

3. Gathering/Writing/Reading logical record from/to storage device such as disk or tape.
(Physical record).

YBOS is organized on a 4-byte alignment structure.

The YBOS library function provides all the tools for manipulation of the above mentioned
elements in a independent Operating System like. But the implementation of the YBOS part in
Midas does not use any reference to the YBOS library code. Instead only the strict necessary func-
tions have be re-written in C and incorporated into the Midas package. This has been motivated
by the fact that only a sub-set of function is essential to the operation of:

e The front-end code: for the composition of the YBOS event (bank structure, logical record).

e The data logger: for writing data to storage device (physical record).

This Midas/YBOS implementation restricts the user to a subset of the YBOS package only
for the front-end part. It doesn’t prevent him/her to use the full YBOS library for stand alone
program accessing data file written by Midas.

The YBOS implementation under Midas has the following restrictions:

e Single leveled bank structures only (no recursive bank allowed).

e Bank structure of the following type: ASCII, BINARY, WORD , DOUBLE WORD, IEEE
FLOATING.

e No mixed data type bank structure allowed.

Logical Record format (Event Format) In the YBOS terminology a logical record refers
to a collection of YBOS bank while in the Midas front-end, it can be referred to as an event.
The logical record consists of a logical record length of a 32bit-word size followed by a single or
collection of YBOS bank. The logical record length counts the number of double word (32bit
word) composing the record without counting itself.

YBOS uses ”double word” unit for all length references.

Bank Format The YBOS bank is composed of a bank header 5 double long words followed by
the data section which has to end on a 4 bytes boundary.

The bank length parameter corresponds to the size of the data section in double word count
+ 1. The supported bank type are defined in the /include/ybos.h file see YBOS data types.

Physical Record (Tape/Disk Format) The YBOS physical record structure is based on a
fixed block size (8190 double words) composed of a physical record header followed by data
from logical records.

This page was generated with the help of DOC++

February 1, 2002 143

http:/ /www. linuxsupportline.com/~doc-+-+

8 appendix A: Data format

Event ID |Trigger Ilask

Serial number (1)

- EVENT HEADEE
Time Stamp

Ewent Data Size (bytes)
Logical Becord Length LEL
(in I*4)

Bank IMame [4char]

Bank number (=1)

Bank Index (=0) YBO3_BAWE HEADEER

Bank Length in (T%4)
Bank Type

| Data ‘

| Dat:a ‘

Bank IMame [4char]
Banlk number (=1)
Bank Indezx (=0}
Bank Length in (I%4)
Bank Type

Data ... ‘

Figure 32: Ybos Event and bank headers with data block.

The Offset is computed with the following rules:
1. If the logical record fits completely in the space of the physical record, the offset value
in the physical record header will be 4.

2. If the block contains first the left over fragment of the previous event started in the
previous block, the offset will be equal to the length of the physical record header +
the left over fragment size.

3. If the logical record extent beyond a full block, the offset will be set to -1.
4. The mark of the end of file is defined with a logical record length set to -1.

This page was generated with the help of DOC++

February 1, 2002 144

http:/ /www. linuxsupportline.com/~doc-+-+

8 appendix A: Data format

LPR
Length of Physical Eecord

{exclusive, in I*4 units)

EEH YTBOS_PHYSREC HEADEER
Length of Physical Header
(=4
Eecord number
(start with 0

Offset to 1 YBOS event
(=4 for 1* event in PH)

Logical Fecord Length LEL
{in T*4)
T TEOS Event

Data ...
Logical Becord Length
(in I*4)

Data ...

Data ...

Figure 33: Ybos Physical record structure with data block.

This page was generated with the help of DOC++

February 1, 2002 145

http:/ /www. linuxsupportline.com/~doc-+-+

9 appendix B: Supported hardware

9

appendix B: Supported hardware

Names

9.1 CAMAC drivers
9.2 VME drivers

9.3 GPIB drivers

Drivers included in the driver’s directory of the MIDAS distribution support various hardware
modules. The driver library is continuously extended to suit the needs of various experiments.
The term ”any OS” refers to NT, Win9x, Linux, DOS, VxWorks. The VMS is no longer supported.

The following list gives an overview of the current supported hardware:

[File | Device Model [Manufacturer | Device Type | Environment
mcstd.h - - Midas CAMAC standard functions any OS
esone.h/c - - ESONE CAMAC standard functions any OS
camacnul.c | - - NULL CAMAC driver any OS
camacrpc.c | - - Midas RPC CAMAC server any OS
hyt1331.c HYT1331 HYTEC Ltd. PC-CAMAC interface MSDOS, Linux
kes2926.c KS2926/3922 | Kinetics Ltd. PC-CAMAC interface 8bits PC card NT/Linux
kes2927.c KS2927/3922 | Kinetics Ltd. PC-CAMAC interface 16bits PC card | NT/Linux
dsp004.c DSP DSP Ltd. PC-CAMAC interface 8bits PC card NT/Linux
wecc32.c CC32 W-ie-n-er PC-CAMAC interface PCI card Linux
ps7106.c PS 7106 Phillips Scientific | CAMAC discriminator Uses hyt1331.h
Irs2365.c LRS 2365 LeCroy CAMAC logic unit Uses hyt1331.h
Irs1151.c LRS1151 LeCroy VME 16 channel scalers VME/VxWorks
Irs1190.c LRS1190 LeCroy VME dual ported memory VME/VxWorks
vmeio.c VMEIO TRIUMF VME 24bit I/0O VME/VxWorks
Irs1821.c/h | LRS 1821 LeCroy FASTBUS Segment Manager Interface | MS-DOS
Irs2373.c/h | LRS 2373 LeCroy Memory Lookup Unit Uses hyt1331.h
rs232.c/h Standard PC | Various RS232 serial port MS-DOS/Windows NT

Follows the class drivers and corresponding device drivers for the slow control system:

| File | Device Model | Manufacturer | Device Type | Environment
cdhv.h/c Class driver - High Voltage All
null.c - - dummy driver All
Irs1440.c LRS 1440 LeCroy High voltage system Uses rs232.c
1rs4032.c LRS 4032 LeCroy High voltage system Uses esone.c
caenl70a.c CAEN 170A CAEN High voltage system Uses esone.c
cd_multi.c/h | Class driver - Analog In/Out All
das1600.c DAS 1600 Keithley Analog/Digital In/Out | MS-DOS/Windows NT
dastemp DAS-TEMP Keithley Temperature meas. MS-DOS/Windows NT
cd_gen.c/h Class driver - Generic I/0O All
ch_acc.c EPICS channel access | - Remote channel access | All

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002

146

9 appendix B: Supported hardware

9.1

CAMAC drivers

The CAMAC drivers can be used in different configuration and may have special behaviors de-
pending on the type of hardware involved. Below are summurized some remarks about these
particular hardware modules.

hyt1331.c This interface uses an ISA board to connect to the crate controller. This card imple-
ment a ”fast” readout cycle by re-triggering the CAMAC read at the end of the previous one.
This feature is unfortunately not reliable when fast processor is used. Wrong returned data
can be expected when CPU clocks is above 250MHz. Attempt on ”slowing down” the 10
through software has not guaranteed perfect result. Contact has been taken with HYTEC
in order to see if possible fix can be applied to the interface. First revision of the PC-card
PAL has been tested but did not show improvement. CVS version of the hyt1331.c until 1.2
contains ”fast readout cycle” and should not be trusted. CVS 1.3 driver revision contains a
patch to this problem. In the mean time you can apply your own patch (see Midas FAQs
red box, see also Hytec)

hyt1331.c Version >= 1.8.3 This version has been modified for 5331 PCI card support running
under the dio task.

khyt1331.c Version >= 1.8.3 A full Linux driver is available for the 5331 PCI card interfacing
to the hyt1331. The kernel driver has been written for the Linux kernel 2.4.2, which comes
with RedHat 7.1. It could be ported back to the 2.2.x kernel because no special feature
of 2.4.x are used, although many data structures and function parameters have changed
between 2.2 and 2.4, which makes the porting a bit painful. The driver supports only one
5331 card with up to four CAMAC crates.

kes292x.c The 2926 is an 8 bit ISA board, while the 2927 is a 16bit ISA board. An equivalent
PCI interface (2915) exists but is not yet supported by Midas (See KCS). No support for
Windowx yet.

Both cards can be used also through a proper Linux driver camaclz.c. This requires to
first load a module camac-kcs292z.0. This software is available but not part of the Midas
distribution yet. Please contact midas@triumf.ca for further information.

wecc32.c The CAMAC crate controller CC32 interface to a PCI card... you will need the proper
Linux module... Currently under test. WindowsNT and W95 drivers available but not
implemented under Midas. (see CC32)

dsp004.c The dsp004 is an 8 bit ISA board PC interface which connect to the PC6002 CAMAC
crate controller. This module is not being manufactured anymore, but somehow several labs
still have that controller in use.

ces8210.c The CAMAC crate controller CBD8210 interface is a VME module to give access up
to 7 CAMAC crate. This driver can be used only under VxWorks OS. (see CBD8210)

This page was generated with the help of DOC++

February 1, 2002 147

http:/ /www. linuxsupportline.com/~doc-+-+

9 appendix B: Supported hardware

9.2

VME drivers

So far the PC-VME interface supported by Midas is ...

wevmemm.c I've got the board, I'm going to test later this year 2000 (see Wiener).

bt617.c Routines for accessing VME over SBS Bit3 Model 617 interface under Windows NT using
the NT device driver Model 983 and under Linux using the vmehb device driver. The VME
calls are implemented for the ”mvmestd” Midas VME Standard. (see Bit3).

9.3

GPIB drivers

There is no specific GPIB driver part of the Midas package. But GPIB is used at Triumf under
WindowsNT for several Slow Control frontends. The basic GPIB DLL library is provided by
National Instrument. Please contact midas@triumf.ca for further information.

For GPIB Linux support please refer to The Linux Lab Project

This page was generated with the help of DOC++

February 1, 2002 148

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

10

appendix C: CAMAC and VME access function call

Names
10.1 Midas CAMAC standard functions

exportable midas CAMAC functions fmc-
std.h] ... 149

10.2 ESONE CAMAC standard functions
exportable esone CAMAC functions [es-
one.h, esone.c/ 173

10.3 Midas VME standard functions
exportable midas VME functions
[mvmestd.h] ... 184

Midas defines its own set of CAMAC and VME calls in order to unify the different hardware
modules that it supports. This interface method permits to be totally hardware as well as OS
independent. The same user code developed on a system can be used as a template for another
application on a different operating system.

While the file mestd.h/c (Midas Camac Standard) provides the interface for the CAMAC
access, the file mvmestc.h/c (Midas VME Standard) is for the VME access.

An extra CAMAC interface built on the top of mcstd provides the ESONE standard CAMAC
calls esone.h/c.

10.1

Midas CAMAC standard functions

exportable midas CAMAC functions fmestd.h/

Names

10.1.1 EXTERNAL INLINE void EXPRT
cam16i (const int ¢, const int n, const int a, const int f,
WORD* d)
16 bits read. 153
10.1.2 EXTERNAL INLINE void EXPRT
cam24i (const int ¢, const int n, const int a, const int f,

DWORD* d)
24 bits read. 154

10.1.3 EXTERNAL INLINE void EXPRT
cam8i_q (const int ¢, const int n, const int a, const int f,
BYTE* d, int* x, int* q)
8 bits read with X, @ response. 154

10.1.4 EXTERNAL INLINE void EXPRT

This page was generated with the help of DOC++

February 1, 2002 149

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

cam16i_q (const int ¢, const int n, const int a, const int f,
WORD* d, int* x, int* q)
16 bits read with X, (response. 154

10.1.5 EXTERNAL INLINE void EXPRT
cam24i_q (const int ¢, const int n, const int a, const int f,
DWORD* d, int* x, int* q)
24 bits read with X, () response. 155

10.1.6 EXTERNAL INLINE void EXPRT
caml16i_r (const int ¢, const int n, const int a, const int f,
WORD** d, const int r)
Repeat 16 bits read T times. 155

10.1.7 EXTERNAL INLINE void EXPRT
cam24i_r (const int ¢, const int n, const int a, const int f,
DWORD** d, const int r)
Repeat 24 bits read r times. 156

10.1.8 EXTERNAL INLINE void EXPRT
cam8i_rq (const int ¢, const int n, const int a, const int f,
BYTE** d, const int r)
Repeat 16 bits read r times while Q. ... 156

10.1.9 EXTERNAL INLINE void EXPRT
cam16i_rq (const int ¢, const int n, const int a, const int f,
WORD** d, const int r)
Repeat 16 bits read r times while Q. ... 157

10.1.10 EXTERNAL INLINE void EXPRT
cam24i rq (const int ¢, const int n, const int a, const int f,
DWORD** d, const int r)
Repeat 24 bits read r times while Q. ... 157

10.1.11 EXTERNAL INLINE void EXPRT
cam8i_sa (const int ¢, const int n, const int a, const int f,
BYTE** d, const int r)
Scan read sub-address (8 bit). 157

10.1.12 EXTERNAL INLINE void EXPRT
cam16i_sa (const int ¢, const int n, const int a, const int f,
WORD** d, const int r)
Scan read sub-address (16 bit). 158

10.1.13 EXTERNAL INLINE void EXPRT
cam24i_sa (const int ¢, const int n, const int a, const int f,
DWORD** d, const int r)
Scan read sub-address (24 bit). 159

10.1.14 EXTERNAL INLINE void EXPRT
cam8i_sn (const int ¢, const int n, const int a, const int f,
BYTE** d, const int r)
Scan read station (8 bit). 160

10.1.15 EXTERNAL INLINE void EXPRT
caml16i_sn (const int ¢, const int n, const int a, const int f,
WORD** d, const int r)
Scan read station (16 bit). 160

10.1.16 EXTERNAL INLINE void EXPRT

This page was generated with the help of DOC++

February 1, 2002 150

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

cam24i_sn (const int ¢, const int n, const int a, const int f,
DWORD** d, const int r)
Scan read station (24 bit). 161

10.1.17 EXTERNAL INLINE void EXPRT
cami (const int ¢, const int n, const int a, const int f,
WORD* d)
Same as caml16i()l 162

10.1.18 EXTERNAL INLINE void EXPRT
cam8o (const int ¢, const int n, const int a, const int f,
BYTE d)
Write 8 bits data. — 162

10.1.19 EXTERNAL INLINE void EXPRT
caml160 (const int ¢, const int n, const int a, const int f,
WORD d)
Write 16 bits data. 162

10.1.20 EXTERNAL INLINE void EXPRT
cam24o (const int ¢, const int n, const int a, const int f,
DWORD d)
Write 24 bits data. 163

10.1.21 EXTERNAL INLINE void EXPRT
cam8o_q (const int ¢, const int n, const int a, const int f,
BYTE d, int* x, int* q)
Write 8 bits data with Q. 163

10.1.22 EXTERNAL INLINE void EXPRT
caml160_q (const int ¢, const int n, const int a, const int f,
WORD d, int* x, int* q)
Write 16 bits data with Q. 164

10.1.23 EXTERNAL INLINE void EXPRT
cam240_q (const int ¢, const int n, const int a, const int f,
DWORD d, int* x, int* q)
Write 24 bits data with Q. 164

10.1.24 EXTERNAL INLINE void EXPRT
cam8o_r (const int ¢, const int n, const int a, const int f,
BYTE* d, const int r)
Repeat Write 8 bits data. 164

10.1.25 EXTERNAL INLINE void EXPRT
caml6o_r (const int ¢, const int n, const int a, const int f,
WORD* d, const int r)
Repeat Write 16 bits data. 165

10.1.26 EXTERNAL INLINE void EXPRT
cam24o_r (const int ¢, const int n, const int a, const int f,
DWORD* d, const int r)
Repeat Write 24 bits data. 165

10.1.27 EXTERNAL INLINE void EXPRT
camo (const int ¢, const int n, const int a, const int f,
WORD d)
Same as caml16o() ool 166

10.1.28 EXTERNAL INLINE int EXPRT

This page was generated with the help of DOC++

February 1, 2002 151

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

camc_chk (const int ¢) Crate presence check. 166

10.1.29 EXTERNAL INLINE void EXPRT
camc (const int ¢, const int n, const int a, const int f)
CAMAC command. 166
10.1.30 EXTERNAL INLINE void EXPRT
camc_q (const int ¢, const int n, const int a, const int f,
int* q)
CAMAC command with Q. 167
10.1.31 EXTERNAL INLINE void EXPRT
camc_sa (const int ¢, const int n, const int a, const int f,
const int r)
Scan command on sub-address. 167
10.1.32 EXTERNAL INLINE void EXPRT
camc_sn (const int ¢, const int n, const int a, const int f,
const int r)
Scan command on station. 167
10.1.33 EXTERNAL INLINE int EXPRT
cam _init (void) CAMAC initilize. 168
10.1.34 EXTERNAL INLINE void EXPRT
cam_exit (void) Close CAMAC. ..., 168
10.1.35 EXTERNAL INLINE void EXPRT
cam_inhibit_set (const int c)
Set Crate inhibit. 168
10.1.36 EXTERNAL INLINE void EXPRT
cam_inhibit_clear (const int c)
Clear Crate inhibit. 169
10.1.37 EXTERNAL INLINE int EXPRT
cam_inhibit_test (const int ¢)
Test Crate inhibit. 169
10.1.38 EXTERNAL INLINE void EXPRT
cam_crate_clear (const int ¢)
Clear Crate. cooiiiiiiiiiiin.. 169
10.1.39 EXTERNAL INLINE void EXPRT
cam_crate_zinit (const int c)
Z Orate. oooiei e 169
10.1.40 EXTERNAL INLINE void EXPRT
cam_lam _enable (const int ¢, const int n)
Enable LAM (Crate Controller). 170
10.1.41 EXTERNAL INLINE void EXPRT
cam_lam _disable (const int ¢, const int n)
Disable LAM (Crate Controller). 170
10.1.42 EXTERNAL INLINE void EXPRT
cam_lam read (const int c, DWORD* lam)
Read LAM of crate controller. 170
10.1.43 EXTERNAL INLINE void EXPRT
This page was generated with the help of DOC++ February 1, 2002 152

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

cam_lam clear (const int ¢, const int n)
Clear LAM register (Crate Controller). 171

10.1.44 EXTERNAL INLINE int EXPRT
cam lam _wait (int* ¢, DWORD* n, const int millisec)
Wait for LAM. 171

10.1.45 EXTERNAL INLINE void EXPRT
cam_interrupt_enable (const int ¢)
Enable interrupts in crate controller. .. 171

10.1.46 EXTERNAL INLINE void EXPRT
cam_interrupt_disable (const int c)
Disable interrupts in crate controller. . 172

10.1.47 EXTERNAL INLINE int EXPRT
cam_interrupt_test (const int c)
Test Crate Interrupt. 172

10.1.48 EXTERNAL INLINE void EXPRT
cam_interrupt_attach (const int ¢, const int n,
void (*isr)(void))
Attach service routine. 172
10.1.49 EXTERNAL INLINE void EXPRT
cam_interrupt_detach (const int ¢, const int n)
Detach service routine. 173

10.1.1

EXTERNAL INLINE void EXPRT cam16i (const int ¢, const int n, const
int a, const int f, WORD* d)

16 bits read.

caml16i() 16 bits input.

Return Value: void

Parameters: c crate number (0..)

n station number (0..30)
a sub-address (0..15)

f function (0..7)

d data read out data

10.1.2

EXTERNAL INLINE void EXPRT cam24i (const int ¢, const int n, const
int a, const int f, DWORD* d)

This page was generated with the help of DOC++

February 1, 2002 153

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

24 bits read.

cam24i() 24 bits input.

Return Value: void

Parameters: c crate number (0..)

n station number (0..30)
a sub-address (0..15)

f function (0..7)

d data read out data

10.1.3

EXTERNAL INLINE void EXPRT cam8i_q (const int ¢, const int n, const
int a, const int f, BYTE* d,

int* x, int* q)

8 bits read with X, Q response.

cam8i_q() 8 bits input with Q response.

Return Value: void

Parameters: crate number (0..)

station number (0..30)
sub-address (0..15)

function (0..7)

data read out data

X response (0:failed,1:success)
Q resonpse (0:no Q, 1: Q)

Q X o B0

10.1.4

EXTERNAL INLINE void EXPRT cam16i_q (const int ¢, const int n,
const int a, const int f,

WORD* d, int* x, int* q)

16 bits read with X, @) response.

cam16i_q() 16 bits input with Q response.

This page was generated with the help of DOC++

February 1, 2002 154

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

Return Value: void

Parameters: c crate number (0..)
n station number (0..30)

a sub-address (0..15)

f function (0..7)

d data read out data

x X response (0:failed,1:success)
q

Q resonpse (0:no Q, 1: Q)

10.1.5

EXTERNAL INLINE void EXPRT cam24i q (const int ¢, const int n,
const int a, const int f,

DWORD* d, int* x, int* q)

24 bits read with X, Q response.

cam24i_q() 24 bits input with Q response.

Return Value: void

Parameters: crate number (0..)

station number (0..30)
sub-address (0..15)

function (0..7)

data read out data

X response (0:failed,1:success)

Q resonpse (0:no Q, 1: Q)

Q X aHhp B0

10.1.6

EXTERNAL INLINE void EXPRT cam16i_r (const int ¢, const int n, const
int a, const int f, WORD** d,

const int r)

Repeat 16 bits read T times.

cam16i_r() Repeat 16 bits input.

Return Value: void

Parameters: crate number (0..)
station number (0..30)
sub-address (0..15)
function (0..7)

data read out data
repeat time

H Qa+Hp B o

This page was generated with the help of DOC++

February 1, 2002 155

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

10.1.7

EXTERNAL INLINE void EXPRT cam24i r (const int ¢, const int n, const
int a, const int f, DWORD**

d, const int r)

Repeat 24 bits read r times.

cam24i r() Repeat 24 bits input.

Return Value: void

Parameters: crate number (0..)
station number (0..30)
sub-address (0..15)
function (0..7)

data read out

repeat time

H AP B O

10.1.8

EXTERNAL INLINE void EXPRT cam8i_rq (const int ¢, const int n,
const int a, const int f

BYTE** d, const int r)

Repeat 16 bits read r times while Q.

cam8i_rq() Repeat 8 bits input with Q stop.

Return Value: void

Parameters: c crate number (0..)
n station number (0..30)
a sub-address (0..15)
f function (0..7)
d pointer to data read out
r repeat time

10.1.9

EXTERNAL INLINE void EXPRT cam16i rq (const int ¢, const int n,
const int a, const int f
WORD** d, const int r)

This page was generated with the help of DOC++

February 1, 2002 156

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

Repeat 16 bits read r times while Q).

cam16irq() Repeat 16 bits input with Q stop.

Return Value: void

Parameters: c crate number (0..)
n station number (0..30)
a sub-address (0..15)

f function (0..7)

d pointer to data read out
r repeat time

10.1.10

EXTERNAL INLINE void EXPRT cam24i rq (const int ¢, const int n,
const int a, const int f
DWORD** d, const int r)

Repeat 2/ bits read r times while Q.

cam24i_rq Repeat 24 bits input with Q stop.

Return Value: void

Parameters: c crate number (0..)
n station number (0..30)
a sub-address (0..15)

£ function (0..7)

d pointer to data read out
r repeat time

10.1.11

EXTERNAL INLINE void EXPRT cam8i_sa (const int ¢, const int n, const
int a, const int f, BYTE** d,

const int r)

Scan read sub-address (8 bit).

cam8&i_sa Read the given CAMAC address and increment the sub-address by one. Repeat r times.
Examples:

This page was generated with the help of DOC++

February 1, 2002 157

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

BYTE pbkdat[4];
cam8i_sa(crate, 5, 0, 2, &pbkdat, 4);

equivalent to :

cam8i(crate, 5, 0, 2, &pbkdat[0]);
cam8i(crate, 5, 1, 2, &pbkdat[1]);
cam8i(crate, 5, 2, 2, &pbkdat[2]);
cam8i(crate, 5, 3, 2, &pbkdat[3]);

Return Value: void

Parameters: crate number (0..)

station number (0..30)

sub-address (0..15)

function (0..7)

pointer to data read out

number of consecutive sub-address to read

H aH o B 0

10.1.12

EXTERNAL INLINE void EXPRT cam16i sa (const int ¢, const int n,

const int a, const int f,
WORD** d, const int r)

Scan read sub-address (16 bit).

cam16i_sa Read the given CAMAC address and increment the sub-address by one. Repeat r times.
Examples:

WORD pbkdat[4];
cam16i_sa(crate, 5, 0, 2, &pbkdat, 4);

equivalent to :

caml16i(crate, 5, 0, 2, &pbkdat[0]);

caml6i(crate, 5, 1, 2, &pbkdat[1]);

caml6i(crate, 5, 2, 2, &pbkdat[2]);

caml6i(crate, 5, 3, 2, &pbkdat[3]);
Return Value: void

This page was generated with the help of DOC++

February 1, 2002 158

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

crate number (0..)

station number (0..30)

sub-address (0..15)

function (0..7)

pointer to data read out

number of consecutive sub-address to read

Parameters:

H aH o B 0

10.1.13

EXTERNAL INLINE void EXPRT cam24i sa (const int ¢, const int n,
const int a, const int f,
DWORD** d, const int r)

Scan read sub-address (24 bit).

cam?24i_sa() Read the given CAMAC address and increment the sub-address by one. Repeat r
times.
Examples:

DWORD pbkdat[8];
cam?4i_sa(crate, 5, 0, 2, &pbkdat, 8);

equivalent to :

cam?4i(crate, 5, 0, 2, &pbkdat[0]);
cam?4i(crate, 6, 0, 2, &pbkdat[1]);
cam24i(crate, 7, 0, 2, &pbkdat[2]);
cam24i(crate, 8, 0, 2, &pbkdat[3]);

Return Value: void

Parameters: crate number (0..)

station number (0..30)

sub-address (0..15)

function (0..7)

pointer to data read out

number of consecutive sub-address to read

H Qo H B 0

10.1.14

EXTERNAL INLINE void EXPRT cam8i_sn (const int ¢, const int n,
const int a, const int f,
BYTE** d, const int r)

This page was generated with the help of DOC++

February 1, 2002 159

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

Scan read station (8 bit).

cam8i-sn() Read the given CAMAC address and increment the station number by one. Repeat r
times.
Examples:

BYTE pbkdat[4];
cam8i_sa(crate, 5, 0, 2, &pbkdat, 4);

equivalent to :

, &pbkdat[0]);
&pbkdat[1]);
, &pbkdat[2]);
, &pbkdat[3]);

cam8i(crate,

-
-

cam8i(crate,
cam8i (crate,

-

-

0 ~N O O
[N eNeNe)
NN NN

cam8i (crate,

Return Value: void

Parameters: c crate number (0..)
n station number (0..30)

a sub-address (0..15)

f function (0..7)

d pointer to data read out

r number of consecutive station to read

10.1.15

EXTERNAL INLINE void EXPRT cam16i sn (const int ¢, const int n,

const int a, const int f
WORD** d, const int r)

Scan read station (16 bit).

caml16i_sn() Read the given CAMAC address and increment the station number by one. Repeat
r times.
Examples:

WORD pbkdat[4];
cam16i_sa(crate, 5, 0, 2, &pbkdat, 4);

equivalent to :

, &pbkdat[0]);
&pbkdat [1]);
&pbkdat [2]);
, &pbkdat[3]);

caml16i(crate,
caml16i(crate,
caml6i(crate,

-

o ~N o O;
O O O O
NN NN

-

-

-
-

cam16i(crate,

-

This page was generated with the help of DOC++

February 1, 2002 160

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

Return Value: void

Parameters: c crate number (0..)
n station number (0..30)

a sub-address (0..15)

f function (0..7)

d pointer to data read out

r number of consecutive station to read

10.1.16

EXTERNAL INLINE void EXPRT cam24i sn (const int ¢, const int n,
const int a, const int f,
DWORD** d, const int r)

Scan read station (24 bit).

cam24i sn() Read the given CAMAC address and increment the station number by one. Repeat
r times.
Examples:

DWORD pbkdat[4];
cam?4i_sa(crate, 5, 0, 2, &pbkdat, 4);

equivalent to :

cam24i(crate, 5, 0, 2, &pbkdat[0]);

cam24i(crate, 6, 0, 2, &pbkdat[1]);

cam?4i(crate, 7, 0, 2, &pbkdat[2]);

cam?4i(crate, 8, 0, 2, &pbkdat[3]);
Return Value: void

crate number (0..)

station number (0..30)

sub-address (0..15)

function (0..7)

pointer to data read out

number of consecutive station to read

Parameters:

H o H o B 0

This page was generated with the help of DOC++

February 1, 2002 161

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

10.1.17

EXTERNAL INLINE void EXPRT cami (const int ¢, const int n, const int
a, const int f, WORD* d)

Same as cam16i()

Same as cam16i()

10.1.18

EXTERNAL INLINE void EXPRT cam8o (const int ¢, const int n, const
int a, const int f, BYTE d)

Write 8 bits data.

cam8o() Write data to given CAMAC address.

Return Value: void

Parameters: c crate number (0..)

n station number (0..30)

a sub-address (0..15)

f function (16..31)

d data to be written to CAMAC

10.1.19

EXTERNAL INLINE void EXPRT cam160 (const int ¢, const int n, const
int a, const int f, WORD d)

Write 16 bits data.

cam160() Write data to given CAMAC address.

Return Value: void

Parameters: c crate number (0..)

n station number (0..30)

a sub-address (0..15)

f function (16..31)

d data to be written to CAMAC

This page was generated with the help of DOC++

February 1, 2002 162

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

10.1.20

EXTERNAL INLINE void EXPRT cam240 (const int ¢, const int n, const
int a, const int f, DWORD d)

Write 24 bits data.

cam?24o() Write data to given CAMAC address.

Return Value: void

Parameters: c crate number (0..)

station number (0..30)
sub-address (0..15)

function (16..31)

data to be written to CAMAC

Q Hhop B

10.1.21

EXTERNAL INLINE void EXPRT cam8o_q (const int ¢, const int n, const
int a, const int f, BYTE d,

int* x, int* q)

Write 8 bits data with Q.

cam8o_q() Write data to given CAMAC address with Q response.

Return Value: void

Parameters: crate number (0..)

station number (0..30)
sub-address (0..15)

function (16..31)

data to be written to CAMAC
X response (0:failed,1:success)
Q resonpse (0:no Q, 1: Q)

Q X e B oo

10.1.22

EXTERNAL INLINE void EXPRT cam160_q (const int ¢, const int n,

const int a, const int f

WORD d, int* x, int* q)

Write 16 bits data with Q.

This page was generated with the help of DOC++

February 1, 2002 163

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

caml6o_q() Write data to given CAMAC address with QQ response.

Return Value: void

Parameters: crate number (0..)

station number (0..30)
sub-address (0..15)

function (16..31)

data to be written to CAMAC
X response (0:failed,1:success)

Q resonpse (0:no Q, 1: Q)

Q X e B o

10.1.23

EXTERNAL INLINE void EXPRT cam240_q (const int ¢, const int n,

const int a, const int f,
DWORD d, int* x, int* q)

Write 24 bits data with Q.

cam240_q() Write data to given CAMAC address with Q response.

Return Value: void

Parameters: c crate number (0..)
n station number (0..30)

a sub-address (0..15)

f function (16..31)

d data to be written to CAMAC
x X response (0:failed,1:success)
q

Q response (0:no Q, 1: Q)

10.1.24

EXTERNAL INLINE void EXPRT cam8o_r (const int ¢, const int n, const
int a, const int f, BYTE* d,

const int r)

Repeat Write 8 bits data.

cam8o_r() Repeat write data to given CAMAC address r times.

This page was generated with the help of DOC++

February 1, 2002 164

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

Return Value: void

Parameters: c crate number (0..)

n station number (0..30)

a sub-address (0..15)

f function (16..31)

d data to be written to CAMAC

10.1.25

EXTERNAL INLINE void EXPRT cam16o_r (const int ¢, const int n,

const int a, const int f

WORD* d, const int r)

Repeat Write 16 bits data.

caml60._r() Repeat write data to given CAMAC address r times.

Return Value: void
Parameters: c crate number (0..)
n station number (0..30)
a sub-address (0..15)
f function (16..31)
d data to be written to CAMAC

10.1.26

EXTERNAL INLINE void EXPRT cam24o0_r (const int ¢, const int n,

const int a, const int f|
DWORD* d, const int r)

Repeat Write 24 bits data.

cam?24o.r() Repeat write data to given CAMAC address r times.

Return Value: void

Parameters: c crate number (0..)

n station number (0..30)

a sub-address (0..15)

f function (16..31)

d data to be written to CAMAC

This page was generated with the help of DOC++

February 1, 2002 165

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

10.1.27

EXTERNAL INLINE void EXPRT camo (const int ¢, const int n, const int
a, const int f, WORD d)

Same as cam16o()

Same as cam160()

10.1.28

EXTERNAL INLINE int EXPRT camc_chk (const int c)

Crate presence check.

camc_chk() Crate presence check.

Return Value: 0:Success, -1:No CAMAC response
Parameters: ¢ crate number (0..)
10.1.29

EXTERNAL INLINE void EXPRT camc (const int ¢, const int n, const int

a, const int f)

CAMAC command.

camc() CAMAC command (no data).

Return Value: void

Parameters: c crate number (0..)
n station number (0..30)
a sub-address (0..15)
f function (8..15, 24..31)

This page was generated with the help of DOC++

February 1, 2002 166

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

10.1.30

EXTERNAL INLINE void EXPRT camc_q (const int ¢, const int n, const

int a, const int f, int* q)

CAMAC command with Q.

camc_q() CAMAC command with Q response (no data).

Return Value: void
Parameters: c crate number (0..)
n station number (0..30)
a sub-address (0..15)
f function (8..15, 24..31)
q Q response (0:no Q, 1:Q)

10.1.31

EXTERNAL INLINE void EXPRT camc_sa (const int ¢, const int n, const

int a, const int f, const int r)

Scan command on sub-address.

camc_sa() Scan CAMAC command on sub-address.

Return Value: void
Parameters: c crate number (0..)
n station number (0..30)
a sub-address (0..15)
f function (8..15, 24..31)
r number of consecutive sub-address to read

10.1.32

EXTERNAL INLINE void EXPRT camc_sn (const int ¢, const int n, const

int a, const int f, const int r)

Scan command on station.

camc_sn() Scan CAMAC command on station.

This page was generated with the help of DOC++

February 1, 2002 167

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

Return Value: void
Parameters: c crate number (0..)
n station number (0..30)
a sub-address (0..15)
f function (8..15, 24..31)
r number of consecutive station to read

10.1.33

EXTERNAL INLINE int EXPRT cam _init (void)

CAMAC initilize.

cam_init() Initialize CAMAC for access.

Return Value: 1: success

10.1.34

EXTERNAL INLINE void EXPRT cam_exit (void)

Close CAMAC.

cam_exit() Close CAMAC accesss.

10.1.35

EXTERNAL INLINE void EXPRT cam_inhibit_set (const int c)

Set Crate inhibit.

cam_inhibit_set() Set Crate inhibit.

Return Value: void
Parameters: c crate number (0..)

This page was generated with the help of DOC++

February 1, 2002 168

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

10.1.36

EXTERNAL INLINE void EXPRT cam_inhibit_clear (const int c)

Clear Crate inhibit.

cam_inhibit_clear() Clear Crate inhibit.

Return Value: void
Parameters: c crate number (0..)
10.1.37

EXTERNAL INLINE int EXPRT cam_inhibit_test (const int c)

Test Crate inhibit.

cam_inhibit_test() Test Crate Inhibit.

Return Value: 1 for set, 0 for cleared
Parameters: c crate number (0..)
10.1.38

EXTERNAL INLINE void EXPRT cam_crate_clear (const int c)

Clear Crate.

cam_crate_clear() Issue CLEAR to crate.

Return Value: void
Parameters: c crate number (0..)
10.1.39

EXTERNAL INLINE void EXPRT cam _crate_zinit (const int c)

Z Crate.

cam_crate_zinit() Issue Z to crate.

Return Value: void
Parameters: ¢ crate number (0..)

This page was generated with the help of DOC++

February 1, 2002 169

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

10.1.40

EXTERNAL INLINE void EXPRT cam lam _enable (const int ¢, const int
n)

Enable LAM (Crate Controller).

cam lam_enable() Enable LAM generation for given station to the Crate controller. It doesn’t
enable the LAM of the actual station itself.

Return Value: void
Parameters: c crate number (0..)
n LAM station

10.1.41

EXTERNAL INLINE void EXPRT cam _lam_disable (const int ¢, const int
n)

Disable LAM (Crate Controller).

cam_lam_disable() Disable LAM generation for given station to the Crate controller. It doesn’t
disable the LAM of the actual station itself.

Return Value: void
Parameters: ¢ crate number (0..)
n LAM station

10.1.42

EXTERNAL INLINE void EXPRT cam_lam read (const int ¢, DWORD*

lam)

Read LAM of crate controller.

cam_lam read() Reads in lam the lam pattern of the entire crate.

Return Value: void
Parameters: c crate number (0..)
lam LAM pattern of the crate

This page was generated with the help of DOC++

February 1, 2002 170

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

10.1.43

EXTERNAL INLINE void EXPRT cam_lam clear (const int ¢, const int
n)

Clear LAM register (Crate Controller).

cam lam clear() Clear the LAM register of the crate controller. It doesn’t clear the LAM of the
particular station.

Return Value: void

Parameters: c crate number (0..)
lam LAM pattern of the crate
n LAM station

10.1.44

EXTERNAL INLINE int EXPRT cam_lam _wait (int* ¢, DWORD* n,

const int millisec)

Wait for LAM.

cam lam_wait() Wait for a LAM to occur with a certain timeout. Return crate and station if LAM
occurs.

Return Value: 1 if LAM occured, 0 else
Parameters: c crate number (0..)
lam LAM pattern with a bit set for the station which

generated the LAM
millisec If there is no LAM after this timeout, the routine
returns

10.1.45

EXTERNAL INLINE void EXPRT cam_interrupt_enable (const int c)

FEnable interrupts in crate controller.

cam_interrupt_enable() Enable interrupts in specific crate

Return Value: void
Parameters: c crate number (0..)

This page was generated with the help of DOC++

February 1, 2002 171

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

10.1.46

EXTERNAL INLINE void EXPRT cam _interrupt_disable (const int c)

Disable interrupts in crate controller.

cam_interrupt_disable() Disables interrupts in specific crate

Return Value: void
Parameters: ¢ crate number (0..)
10.1.47

EXTERNAL INLINE int EXPRT cam_interrupt_test (const int c)

Test Crate Interrupt.

cam_interrupt_test() Test Crate Interrupt.

Return Value: 1 for set, 0 for cleared
Parameters: c crate number (0..)
10.1.48

EXTERNAL INLINE void EXPRT cam_interrupt_attach (const int c,
const int n, void (*isr)(void))

Attach service routine.

cam_interrupt_attach() Attach service routine to LAM of specific crate and station.

Return Value: void
Parameters: c crate number (0..)
n station number

This page was generated with the help of DOC++

February 1, 2002 172

http:/ /www. linuxsupportline.com/~doc-+-+

10

appendix C: CAMAC and VME access function call

10.1.49

EXTERNAL INLINE void EXPRT cam_interrupt_detach (const int c,
const int n)

Detach service routine.

cam_interrupt_detach() Detach service routine from LAM.

Return Value:
Parameters:

10.2

ESONE CAMAC standard functions

void
c crate number (0..)
n station number

exportable esone CAMAC functions [esone.h, esone.c]/

Names
10.2.1 INLINE void ccinit (void) CAMAC initialization. 174
10.2.2 INLINE int fccinit (void) CAMAC initialization. 175
10.2.3 INLINE void cdreg (int* ext, const int b, const int ¢, const int n,
const int a)

External Address register. 175
10.2.4 INLINE void cssa (const int f, int ext, unsigned short* d, int* q)

16 bit function. oL 175
10.2.5 INLINE void cfsa (const int f, const int ext, unsigned long* d, int* q)

24 bit function. 176
10.2.6 INLINE void cccc (const int ext) Crate Clear.c.cocoiiia.. 176
10.2.7 INLINE void cccz (const int ext) Crate Z. ... 177
10.2.8 INLINE void ceci (const int ext, int 1)

Crate I., 177
10.2.9 INLINE void ctci (const int ext, int* 1)

Crate I.o, 177
10.2.10 INLINE void cced (const int ext, int 1)

Crate D., 178
10.2.11 INLINE void cted (const int ext, int* 1)

Test Crate D., 178
10.2.12 INLINE void cdlam (int* lam, const int b, const int ¢, const int n,

const int a, const int inta[2])

Declare LAM.o 178

10.2.13 INLINE void ctgl (const int ext, int*)
This page was generated with the help of DOC++ February 1, 2002 173

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

Test GL. ..ot 179
10.2.14 INLINE void cclm (const int lam, int 1)

dis/enable LAM. 179
10.2.15 INLINE void cclnk (const int lam, void (*isr)(void))

Link LAM to service procedure 179
10.2.16 INLINE void cculk (const int lam) Detach LAM from service procedure ... 180
10.2.17 INLINE void cergl (const int lam) Re-enable LAM 180
10.2.18 INLINE void ccle (const int lam) Clear LAM.ooiiiiiiiat. 180
10.2.19 INLINE void ctlm (const int lam, int* 1)

Test LAM.ovooiiiiiiiiiiinnn.. 181

10.2.20 INLINE void cfga (int f], int exta[], int intc[], int qa[], int cb[])
General external address scan function.

181
10.2.21 INLINE void csga (int f[], int exta[], int intc[], int qa[], int cb[])
General external address scan function.

181
10.2.22 INLINE void cfmad (int f, int extb[], int intc[], int cb[])

Address scan function. 182
10.2.23 INLINE void ecsmad (int f, int extb[], int intc[], int cb[])

Address scan function. 182
10.2.24 INLINE void cfubc (const int f, int ext, int intc[], int cb[])

Repeat function Q-stop. 183
10.2.25 INLINE void csubc (const int f, int ext, int intc[], int cb[])

Repeat function Q-stop. 183
10.2.26 INLINE void cfubr (const int f, int ext, int intc[], int cb[])

Repeat function. ... 183
10.2.27 INLINE void csubr (const int f, int ext, int intc[], int cb[])

Repeat function. 184

Not all the functionality of ESONE standard have been fully tested.

10.2.1

INLINE void ccinit (void)

CAMAC initialization.

ccinit CAMAC initialization
CAMAC initialization must be called before any other ESONE subroutine call

Return Value: void

This page was generated with the help of DOC++

February 1, 2002 174

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

10.2.2

INLINE int fccinit (void)

CAMAC initialization.

fecinit CAMAC initialization with return status

fccinit can be called instead of ccinit to determine if the initialization was successful

Return Value: 1 for success, 0 for failure

10.2.3

INLINE void cdreg (int* ext, const int b, const int ¢, const int n, const int

a)

External Address register.

cdreg Control Declaration REGister.

Compose an external address from BCNA for later use. Accessing CAMAC through ext could
be faster if the external address is memory mapped to the processor (hardware dependent). Some
CAMAC controller do not have this option see appendix D: Supported hardware. In this case

Return Value: void
Parameters: ext external address
b branch number (0..7)
c crate number (0..)
n station number (0..30)
a sub-address (0..15)
10.2.4

INLINE void cssa (const int f, int ext, unsigned short™* d, int* q)

16 bit function.

cssa Control Short Operation.
16 bit operation on a given external CAMAC address.

The range of the f is hardware dependent. The number indicated below are for standard
ANSI/IEEE Std (758-1979)
Execute cam16i for <8, cam160 for £>15, camc_q for (£>7 or £>23)

This page was generated with the help of DOC++

February 1, 2002 175

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

Return Value: void

Parameters: f function code (0..31)
ext external address
d data word
q Q response

10.2.5

INLINE void cfsa (const int f, const int ext, unsigned long* d, int* q)

24 bit function.

cfsa Control Full Operation.
24 bit operation on a given external CAMAC address.

The range of the f is hardware dependent. The number indicated below are for standard
ANSI/IEEE Std (758-1979)
Execute cam24i for <8, cam24o for £>15, camc_q for (£>7 or £>23)

Return Value: void

Parameters: f function code (0..31)
ext external address
d data long word
q Q response

10.2.6

INLINE void cccc (const int ext)

Crate Clear.

ccce Control Crate Clear.

Generate Crate Clear function. Execute cam_crate_clear()

Return Value: void
Parameters: ext external address

This page was generated with the help of DOC++

February 1, 2002 176

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

10.2.7

INLINE void cccz (const int ext)

Crate Z.
cccz Control Crate Z.
Generate Dataway Initialize. Execute cam_crate_zinit()
Return Value: void
Parameters: ext external address
10.2.8
INLINE void ccci (const int ext, int 1)
Crate I
ccci Control Crate 1.
Set or Clear Dataway Inhibit, Execute cam_inhinit_set() /clear()
Return Value: void
Parameters: ext external address
1 action 1=0 -> Clear I, I=1 -> Set I
10.2.9
INLINE void ctci (const int ext, int* 1)
Crate I
ctci Test Crate I.
Test Crate Inhibit, Execute cam_inhibit_test()
Return Value: void
Parameters: ext external address
1 action 1=0 -> Clear I, I=1 -> Set I
This page was generated with the help of DOC++ February 1, 2002 177

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

10.2.10

INLINE void cced (const int ext, int 1)

cced Control Crate D.
Enable or Disable Crate Demand.

Return Value: void

Parameters: ext external address
1 action 1=0 -> Clear D, 1=1 -> Set D

10.2.11

Crate D.

INLINE void cted (const int ext, int™* 1)

cted Control Test Crate D.
Test Crate Demand.

Return Value: void

Parameters: ext external address
1 D cleared -> 1=0, D set -> 1=1

10.2.12

Test Crate D.

INLINE void cdlam (int* lam, const int b, const int ¢, const int n, const int

a, const int inta[2])

cdlam Control Declare LAM.
Declare LAM, Identical to cdreg.

Return Value: void
Parameters: lam
b
Cc
n
a
inta[2]

external LAM address
branch number (0..7)
crate number (0..)

station number (0..30)
sub-address (0..15)
implementation dependent

Declare LAM.

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002

178

10 appendix C: CAMAC and VME access function call

10.2.13

INLINE void ctgl (const int ext, int* 1)

Test GL.

ctgl Control Test Demand Present.
Test the LAM register.

Return Value: void
Parameters: lam external LAM register address
1 11=0 if any LAM is set.

10.2.14

INLINE void cclm (const int lam, int 1)

dis/enable LAM.

cclm Control Crate LAM.
Enable or Disable LAM. Execute F24 for disable, F26 for enable.

Return Value: void
Parameters: lam external address
1 action 1=0 -> disable LAM , 1=1 -> enable LAM

10.2.15

INLINE void cclnk (const int lam, void (*isr)(void))

Link LAM to service procedure

cclnk Link LAM to service procedure

Link a specific service routine to a LAM. Since this routine is executed asynchronously, care
must be taken on re-entrancy.

Return Value: void
Parameters: lam external address
isr name of service procedure

This page was generated with the help of DOC++

February 1, 2002 179

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

10.2.16

INLINE void cculk (const int lam)

Detach LAM from service procedure

cculk Unlink LAM from service procedure

Performs complementary operation to cclnk.

Return Value: void
Parameters: lam external address
10.2.17

INLINE void ccrgl (const int lam)

Re-enable LAM

ccrgl Relink LAM
Re-enable LAM in the controller

Return Value: void
Parameters: lam external address
10.2.18

INLINE void cclc (const int lam)

Clear LAM.

ccle Control Clear LAM. Clear the LAM of the station pointer by the lam address.

Return Value: void
Parameters: lam external address

This page was generated with the help of DOC++

February 1, 2002 180

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

10.2.19

INLINE void ctlm (const int lam, int* 1)

Test LAM.

ctlm Test LAM.
Test the LAM of the station pointed by lam. Performs an F8

Return Value: void
Parameters: lam external address
1 No LAM-> 1=0, LAM present-> 1=1

10.2.20

INLINE void cfga (int f[], int extal], int intc[], int qal[], int cbl[])

General external address scan function.

cfga Control Full (24bit) word General Action.

Return Value: void

Parameters: f function code
extal] external address array
intc[] data array
qal] Q response array
cb[] control block array

¢b[0] : number of function to perform
cb[1] : returned number of function performed

10.2.21

INLINE void csga (int f[], int extal], int intc|], int qal[], int cbl[])

General external address scan function.

csga Control (16bit) word General Action.

Return Value: void

Parameters: f function code
extal] external address array
intc[] data array
qal] Q response array
cb[] control block array

cb[0] : number of function to perform
cb[1] : returned number of function performed

This page was generated with the help of DOC++

February 1, 2002 181

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

10.2.22

INLINE void cfmad (int f, int extb]], int intc]], int cbl])

Address scan function.

cfmad Control Full (24bit) Address Q scan.

Scan all sub-address while Q=1 from a0..al5 max from address extb[0] and store corresponding
data in intc[]. If Q=0 while A<15 or A=15 then cross station boundary is applied (n-> n+1) and
sub-address is reset (a=0). Perform action until either cb[0] action are performed or current
external address exceeds extb[1].

implementation of c¢b[2] for LAM recognition is not implemented.

Return Value: void
Parameters: f function code
extb[] external address array

extb[0] : first valid external address
extb[1] : last valid external address

intc[] data array
qal] Q response array
cb[] control block array

cb[0] : number of function to perform
cb[1] : returned number of function performed

10.2.23

INLINE void ecsmad (int f, int extb]], int intc|], int cbl])

Address scan function.

csmad Control (16bit) Address Q scan.

Scan all sub-address while Q=1 from a0..a15 max from address extb[0] and store corresponding
data in intc[]. If Q=0 while A<15 or A=15 then cross station boundary is applied (n-> n+1) and
sub-address is reset (a=0). Perform action until either cb[0] action are performed or current
external address exceeds extb[1].

implementation of cb[2] for LAM recognition is not implemented.

Return Value: void
Parameters: f function code
extb[] external address array

extb[0] : first valid external address
extb[1] : last valid external address

intc[] data array
qal] Q response array
cb[] control block array

cb[0] : number of function to perform
cb[1] : returned number of function performed

This page was generated with the help of DOC++

February 1, 2002 182

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

10.2.24

INLINE void cfubc (const int f, int ext, int intc[], int cb[])

Repeat function Q-stop.

cfubc Control Full (24bit) Block Repeat with Q-stop.

Execute function f on address ext with data intc[] while Q.

Return Value: void

Parameters: f function code
ext external address array
intc[] data array
cb[] control block array

cb[0] : number of function to perform
cb[1] : returned number of function performed

10.2.25

INLINE void csubc (const int f, int ext, int intc|], int cbl])

Repeat function Q-stop.

csube Control (16bit) Block Repeat with Q-stop.

Execute function f on address ext with data intc[] while Q.

Return Value: void

Parameters: f function code
ext external address array
intc[] data array
cb[] control block array

cb[0] : number of function to perform
cb[1] : returned number of function performed

10.2.26

INLINE void cfubr (const int f, int ext, int intcl], int cbl])

Repeat function.

cfubr Repeat Mode Block Transfer (24bit).

Execute function f on address ext with data intc[] if Q. If noQ keep current intc[] data. Repeat
cb[0] times.

This page was generated with the help of DOC++

February 1, 2002 183

http:/ /www. linuxsupportline.com/~doc-+-+

10 appendix C: CAMAC and VME access function call

Return Value: void

Parameters: f function code
ext external address array
intc[] data array
cb[] control block array

cb[0] : number of function to perform
cb[1] : returned number of function performed

10.2.27

INLINE void csubr (const int f, int ext, int intc|], int cbl])

Repeat function.

csubr Repeat Mode Block Transfer (16bit).

Execute function f on address ext with data intc[] if Q. If noQ keep current intc[] data. Repeat
cb[0] times.

Return Value: void

Parameters: f function code
ext external address array
intc[] data array
cb[] control block array

cb[0] : number of function to perform
cb[1] : returned number of function performed

10.3

Midas VME standard functions

exportable midas VME functions [mvmestd.h/

This interface is brand new and not yet documented. But the for your information this code will
implement basic VME access functions such as device open/close, map/unmap, read/write.

This page was generated with the help of DOC++

February 1, 2002 184

http:/ /www. linuxsupportline.com/~doc-+-+

11 appendix D: Computer Busy Logic

11

appendix D: Computer Busy Logic

A ”computer busy logic” has to be implemented for a front-end to work properly. The reason
for this is that some ADC modules can be re-triggered. If they receive more than one gate pulse
before being read out, they accumulate the input charge that leads to wrong results. Therefore
only one gate pulse should be sent to the ADC’s, additional pulses must be blocked before the
event is read out by the front-end. This operation is usually performed by a latch module, which
is set by the trigger signal and reset by the computer after it has read out the event:

The output of this latch is shaped (limited in its pulse with to match the ADC gate width)
and distributed to the ADC’s. This scheme has two problems. The computer generates the reset
signal, usually by two CAMAC output functions to a CAMAC IO unit. Therefore the duration of
the pulse is a couple of ms. There is a non-negligible probability that during the reset pulse there
is another hardware trigger. If this happens and both inputs of the latch are active, its function is
undefined. Usually it generates several output pulses that lead to wrong ADC values. The second
problem lies in the fact that the latch can be just reset when a trigger input is active. This can
happen since trigger signals usually have a width of a few tens of nanoseconds. In this case the
latch output signal does not carry the timing of the trigger signal, but the timing of the reset
signal. The wrong timing of the output can lead to false ADC and TDC signals. To overcome this
problem, a more elaborate scheme is necessary. One possible solution is the use of a latch module
with edge-sensitive input and veto input. At PSI, the module ”D. TRIGGER / DT102” can be
used. The veto input is also connected to the computer:

Hardware trigger Latch ADC gate
& set out ———=&

Reset

Event readout finished
(wia computer 10 maodule)

Figure 34: Latched trigger layout.

To reset this latch, following bit sequence is applied to the computer output (signals are
displayed active low):

The active veto signal during the reset pulse avoids that the latch can receive a ”set” and
a "reset” simultaneously. The edge sensitive input ensures that the latch can only trigger on a
leading edge of a trigger signal, not on the removing of the veto signal. This ensures that the
timing of the trigger is always carried at the ADC/TDC gate signal.

This page was generated with the help of DOC++

February 1, 2002 185

http:/ /www. linuxsupportline.com/~doc-+-+

11 appendix D: Computer Busy Logic

Latch

Hardware trigger ADC gate
L lnput Out —————&
Yeto
Reset

To cormputer autput

Figure 35: Improved Latched trigger layout.

WELD

Feset

Figure 36: Veto Timing.

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002

186

12 appendix E: Midas libraries

12

appendix E: Midas libraries

Programming information, environment, macros, functions.

Names
12.1 Environment variables i 188
12.2 State Codes e 188
12.3 Transition Codesttt 189
124 Midas Data Types ...t 189
12.5 Midas bank examples i, 190
12.6 YBOS Bank Types ooiuiiiiiiiiiiiiiii i 190
12.7 YBOS bank examples ... 191
12.8 Midas Library exportable midas functions through inclu-

sion of midas.h oL, 193
12.9 MIDAS Macros Message Macros, Acquisition. Exportable

MACROs through midas.h, msystem.h or

ybos.h. ... 238
12.10 YBOS library exportable ybos functions through inclu-

sion of ybos.h ... 242

The midas libraries are composed of function calls subdivised into several main categories:

e bk_xzz(...) Midas bank manipulation
e bm_zzz(...) buffer management calls
e cm_zzz(...) common system calls

e db_zzx(...) database managemnt calls
e cl_zzz(...) Electronic Log calls

e hs_zzz(...) History manipulation calls
e ss_xxz(...) system calls

e ybk_zzz(...) YBOS bank manipulation

This page was generated with the help of DOC++

February 1, 2002 187

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

12.1

Environment variables

Midas uses a couple of environment variables to facilitate application startup.

MIDAS EXPTAB This variable specify the location of the exptab file containing the pre-
defined midas experiment. The default location are: OS_UNIX: /etc, / , OS_-WINNT:
\system32, \system.

MIDAS_SERVER_HOST This variable predefines the names of the host on which the Mi-
das experiment shared memories are residing. It is needed when connection to a remote
experiment is requested. This variable is valid for Unix as well as Windows OS.

MIDAS EXPT_NAME This variable predefines the name of the experiment to connect by
default. It prevents the requested application to ask for the experiment name when mul-
tiple experiments are available on the host or to add the -e <expt_name> argument to the
application command. This variable is valid for Unix as well as Windows OS.

MIDAS DIR This variable predefines the LOCAL directory path where the shared memories
for the experiment are located. It supersede the host_name and the expt_name as well as
the MIDAS_SERVER_HOST and MIDAS_EXPT_NAME as a given directory path can only
refer to a single experiment.

MCHART_DIR This variable is ... for later... This variable is valid only under Linux as the -D
is not supported under WindowsXX

12.2

State Codes

These number will be apparent in the ODB under the ” /Runinfo/State”.

e 1 STATE_STOPPED
e 2 STATE_PAUSED
e 3 STATE_RUNNING

This page was generated with the help of DOC++

February 1, 2002 188

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

12.3

Transition Codes

These number will be apparent in the ODB under the ” /Runinfo/Requested transition”

e 1 TR.START
e 2 TR.STOP

e 4 TR_ PAUSE

e 8 TR_ RESUME

12.4

Midas Data Types

Midas defined its own data type for OS compatibility. It is suggested to use them in order to
insure a proper compilation when moving code from one OS to another. float and double retain
OS definition.

e BYTE unsigned char

e WORD unsigned short int (16bits word)
¢ DWORD unsigned 32bits word

o INT signed 32bits word

e BOOL OS dependent.

When defining a data type either in the frontend code for bank definition or in user code to
define ODB variables, Midas requires the use of its own data type declaration. The list below
shows the main Type IDentification to be used (refers to midas.h for complete listing):

e TID_BYTE unsigned byte 0 255

e TID SBYTE signed BYTE -128 127

e TID_CHAR single character 0 255

e TID WORD two BYTE 0 65535

e TID_SHORT signed WORD -32768 32767
e TID_DWORD four bytes 0 2%*32-1

e TID_INT signed DWORD -2**31 2**31-1
e TID _BOOL four bytes bool 0 1

e TID _FLOAT four bytes float format

This page was generated with the help of DOC++

February 1, 2002 189

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

e TID_DOUBLE eight bytes float format

12.5

Midas bank examples

There are several examples under the Midas source code that you can check. Please have a look
at

e Frontend code midas/examples/experiment/frontend.c etc...

e Backend code midas/ezamples/experiment/analyzer.c etc...

12.6

YBOS Bank Types

YBOS defines several type but all types should be 4 bytes aligned. Distinction of signed and
unsigned is not done. When mixing MIDAS and YBOS in the frontend for RO_ODB see The
Equipment structure make sure the bank types are compatible.

¢ 11 BKTYPE Bank of Bytes

e 12 BKTYPE Bank of 2 bytes data

e T4 BKTYPE Bank of 4 bytes data

F4_ BKTYPE Bank of float data
D8_BKTYPE Bank of double data

A1 BKTYPE Bank of ASCII char

This page was generated with the help of DOC++

February 1, 2002 190

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

12.7

YBOS bank examples

Basic examples using YBOS banks are available in the midas tree under examples/ybosexpt.

Frontend code Example 1, 2 shows the bank creation with some CAMAC acquisition.

—————— example 1 -------- Simple 16 bits bank construction

void read_cft (DWORD #*pevent)

{

}

Example 3 shows a creation of an EVID bank containg a duplicate of the midas header.
As the Midas header is stripped out of the event when data are logger, it is necessary to
compose such event to retain event information for off-line analysis.
macros (see Midas Library) are available in order to extract from a pre-composed Midas
event the internal header fields i.e. Event ID, Trigger mask, Serial number, Time stamp. In
this EVID bank we added the current run number which is retrieve by the frontend at the

DWORD *pbkdat, slot;

ybk_create ((DWORD *)pevent, "TDCP", I2_BKTYPE, &pbkdat);
for (slot=FIRST_CFT;slot<=LAST_CFT;slot++)
{
cami(3,slot,1,6,(WORD *)pbkdat) ;
((WORD *)pbkdat)++;
cam16i_rq(3,slot,0,4, (WORD **)&pbkdat,16);
}
ybk_close ((DWORD *)pevent, I2_BKTYPE, pbkdat);
return;

—————— example 2 -------- Simple 32bit bank construction
DWORD *pbkdat;

ybk_create ((DWORD *)pevent, "TICS", I4_BKTYPE, &pbkdat);
camo(2,22,0,17,ZERO) ;

cam24i_r(2,22,0,0, (DWORD *x) &pbkdat,10);
cam24i_r(2,22,0,0, (DWORD *x) &pbkdat,10);
cam24i_r(2,22,0,0, (DWORD *x) &pbkdat,10);
cam24i_r(2,22,0,0, (DWORD *x) &pbkdat,10);
cam24i_r(2,22,0,0, (DWORD *x) &pbkdat,9);

ybk_close ((DWORD *)pevent, I4_BKTYPE, pbkdat);

return 0;

begin of a run.

—————— example 3 -------- Full equipment readout function

INT read_cum_scaler_event(char *pevent, INT off)

{

INT i;

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

Uses of predefined

February 1, 2002 191

12 appendix E: Midas libraries

DWORD *pbkdat, *pbktop, *podbvar;
ybk_init ((DWORD *) pevent);

// collect user hardware SCALER data

ybk_create ((DWORD *)pevent, "EVID", I4_BKTYPE, (DWORD *) (&pbkdat));

* (pbkdat)++ = gbl_tgt_counter++; // event counter
*((WORD *)pbkdat) = EVENT_ID(pevent); ((WORD *)pbkdat)++;

*((WORD *)pbkdat) = TRIGGER_MASK(pevent); ((WORD *)pbkdat)-++;

* (pbkdat)++ = SERIAL_NUMBER (pevent) ;

* (pbkdat)++ = TIME_STAMP (pevent) ;

* (pbkdat)++ = gbl_run_number; // run number
ybk_close ((DWORD *)pevent, pbkdat) ;

// BEGIN OF CUMULATIVE SCALER EVENT
ybk_create ((DWORD *)pevent, "CUSC", I4_BKTYPE, (DWORD x) (&pbkdat)) ;
for (i=0 ; i<NSCALERS ; i++){
xpbkdat++ = scaler[i].cuvall[0];
xpbkdat++ = scaler[i].cuval[1];
}

ybk_close (DWORD *)pevent, I4_BKTYPE, pbkdat);
// END OF CUMULATIVE SCALER EVENT

// event in bytes for Midas
return (ybk_size ((DWORD *)pevent));
}

Backend code If the data logging is done through YBOS format (see ODB /Logger Tree Format)
the events on the storage media will have been stripped from the MIDAS header used for
transfering the event from the frontend to the backend. This means the logger data format
is a ”"TRUE” YBOS format. Uses of standard YBOS library is then possible.

--- Example of YBOS bank extraction ----

void process_event(HNDLE hBuf, HNDLE request_id, EVENT_HEADER *pheader, void *pevent)
{

INT status;

DWORD *plrl, *pybk, *pdata, bklen, bktyp;

char banklist[YB_STRING_BANKLIST_MAX];

// pointer to data section
plrl = (DWORD *) pevent;

// Swap event
yb_any_event_swap (FORMAT_YBOS, plrl) ;

// bank name given through argument list
if ((status = ybk_find (plrl, sbank_name, &bklen, &bktyp, (void *)&pybk)) == YB_SUCCESS)
{
// given bank found in list
status = ybk_list (plrl, banklist);
printf ("#banks:%i Bank list:-%s-\n",status,banklist);
printf ("Bank:%s - Length (I*4):%i - Type:%i - pBk:0x%p\n",sbank_name, bklen, bktyp, pybk);

This page was generated with the help of DOC++

February 1, 2002 192

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

// check id EVID found in event for id and msk selection
if ((status = ybk_find (plrl, "EVID", &bklen, &bktyp, (void *)&pybk)) == YB_SUCCESS)
{

pdata = (DWORD *) ((YBOS_BANK_HEADER *)pybk + 1);

}

// iterate through the event
pybk = NULL;
while ((bklen = ybk_iterate(plrl, &pybk, (void *)&pdata))
&& (pybk !'= NULL))
printf("bank length in 4 bytes unit: %d\n",bklen);

}
else
{
status = ybk_list (plrl, banklist);
printf ("Bank -%s- not found (%i) in ",sbank_name, status);
printf ("#banks:%i Bank list:-%s-\n",status,banklist);
}
}
12.8
Midas Library
exportable midas functions through inclusion of midas.h
Names
12.8.1 #define LAM_SOURCE (¢, s)
MACRO Code LAM register with crate
and Station. ...l 197
12.8.2 #define LAM_STATION (s) MACRO Code LAM Station. 197
12.8.3 #define LAM_SOURCE_CRATE (c)
MACRO Convert coded Crate. 198
12.8.4 #define LAM_SOURCE_STATION (s)
MACRO Convert coded Sattion. 198
12.8.5 #define TRIGGER_MASK (e)
MACRO Trigger mask. —............... 198
1286 #define EVENT_ID (e) MACRO event ID. 198
12.8.7 #define SERIAL_ NUMBER (e)

This page was generated with the help of DOC++

February 1, 2002 193

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries
MACRO serial number. 199
12.8.8 #define TIME_STAMP (¢) MACRO Time stamp. 199
12.8.9 INT cm _set_msg_print() (INT system_mask, INT user_mask,
int (*func)(const char*))
Set message ..., 199
12.8.10 INT cm _msg() (INT message_type, char* filename, INT line,
const char* routine, const char* format, ...)
Returns MIDAS environment variables.
200
12.8.11 INT cm_msgl() (INT message_type, char* filename, INT line,
const char* facility, const char* routine,
const char* format, ...
Redirect messages to a prive log file. 201
12.8.12 INT cm_msg register() (void (*func)(HNDLE, HNDLE,
EVENT_HEADER*, void*))
Register a message dispatch function. 201
12.8.13 INT cm_get_environment() (char* host-name, char* exp_name)
Returns MIDAS environment variables.
202
12.8.14 INT cm_connect_experiment() (char* host name, char* exp name,
char* client_name,
void (*func)(char*))
Connects to a MIDAS ezperiment. 204
12.8.15 INT cm_disconnect_experiment() (void)
Disconnect from a MIDAS experiment. 205
12.8.16 INT cm_get_experiment_database() (HNDLE* hDB,
HNDLE* hKeyClient)
Get the handle to the ODB 206
12.8.17 INT cm_register_transition (INT transition, INT (*func)(INT,
char*))
Registers a callback function for run tran-
SIIOMS. ot 206
12.8.18 INT bm _open_buffer() (char* buffer name, INT buffer_size,
INT* buffer_handle)
open an event buffer. 207
12.8.19 INT bm_close_buffer() (INT buffer_handle)
close event buffer. 208
12.8.20 INT bm _set_cache_size() (INT buffer_handle, INT read size,
INT write_size)
Turns on/off caching for reading and writ-
ing to a buffer. ... Ll 209
12.8.21 INT bm_compose_event() (EVENT_HEADER¥* event_header,
short int event_id,
short int trigger mask, DWORD size,
DWORD serial)
This page was generated with the help of DOC++ February 1, 2002 194

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries
compose the Midas event header. 209
12.8.22 INT bm _request_event() (HNDLE buffer_handle, short int event._id,
short int trigger mask,
INT sampling_type, HNDLE* request_id,
void (*func)(HNDLE, HNDLE,
EVENT_HEADER*, void*))
event request.l 210
12.8.23 INT bm_delete_request() (INT request_id)
delete event request. 211
12.8.24 INT bm _send_event() (INT buffer_handle, void* source,
INT buf_size, INT async_flag)
send event to buffer. 212
12.8.25 INT bm _flush_cache() (INT buffer_handle, INT async_flag)
empty write cache. 213
12.8.26 INT bm _receive_event() (INT buffer_handle, void* destination,
INT* buf size, INT async_flag)
receive event from buffer., 213
12.8.27 INT bm_empty_buffers() ()
empty event buffer. 215
12.8.28 wvoid bk_init() (void* event) Initialize an event. 215
12.8.29 void bk_init32() (void* event)
Initialize an event (> 82K Bytes). 216
12.8.30 INT bk_size() (void* event) compute event size. 216
12.8.31 void bk_create() (void* event, char* name, WORD type,
void* pdata)
Create a bank. 216
12.8.32 INT bk_close() (void* event, void* pdata)
Close bank. ..., 217
12.8.33 INT bk_locate() (void* event, char* name, void* pdata)
loate a bank in event. 217
12.8.34 INT bk_iterate() (void* event, BANK** pbk, void* pdata)
Retrieve banks pointer from current event.
.. 218
12.8.35 INT bk_swap() (void* event, BOOL force)
Swap the content of an event. 219
12.8.36 INT db_delete_key() (HNDLE hDB, HNDLE hKey,
BOOL follow_links)
Delete ODB key. —cccoviiiin... 219
12.8.37 INT db_find key() (HNDLE hDB, HNDLE hKey, char* key name,
HNDLE* subhKey)
Retrieve key handle from key name. 220
12.8.38 INT db_set_value() (HNDLE hDB, HNDLE hKeyRoot,
char* key_name, void* data, INT data_size,
INT num_values, DWORD type)
This page was generated with the help of DOC++ February 1, 2002 195

http:/ /www. linuxsupportline.com/~doc-+-+

12

appendix E: Midas libraries

12.8.39

12.8.40

12.8.41

12.8.42

12.8.43

12.8.44

12.8.45

12.8.46

12.8.47

12.8.48

12.8.49

12.8.50

12.8.51

12.8.52

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

Sets key data in ODB.

db_get_value() (HNDLE hDB, HNDLE hKeyRoot,
char* key_name, void* data, INT* buf_size,
DWORD type)
Returns key data from the ODB.

db_enum key() (HNDLE hDB, HNDLE hKey, INT index,
HNDLE* subkey_handle)
Enumerates keys in a ODB directory.

db_get_key() (HNDLE hDB, HNDLE hKey, KEY* key)
Returns information about an ODB key.

223
db_get_data() (HNDLE hDB, HNDLE hKey, void* data,
INT* buf_size, DWORD type)
Returns data from a key.

db_get_data_index() (HNDLE hDB, HNDLE hKey,
void* data, INT* buf_size, INT index,
DWORD type)
Get single element of data from an array
handle.

db_set_data() (HNDLE hDB, HNDLE hKey, void* data,
INT buf_size, INT num_values, DWORD type)
Sets data of a key.

db_set_data_index() (HNDLE hDB, HNDLE hKey,
void* data, INT data_size, INT index,
DWORD type)
Set individual values of a key array.

db_load() (HNDLE hDB, HNDLE hKeyRoot, char* filename,
BOOL bRemote)
Loads ODB entries from an ASCII file.

db_copy() (HNDLE hDB, HNDLE hKey, char* buffer,
INT* buffer_size, char* path)
Copies part of the ODB into an ASCII
SITING.

db_paste() (HNDLE hDB, HNDLE hKeyRoot, char* buffer)
Pastes wvalues into the ODB from an
ASCII string. «.oovveneiiniiinnnn

db_save() (HNDLE hDB, HNDLE hKey, char* filename,
BOOL bRemote)
Save ODB entries to an ASCII file.

db_sprintf() (char* string, void* data, INT data_size,
INT index, DWORD type)
Convert an ODB entry to a string.

db_get_record_size() (HNDLE hDB, HNDLE hKey,
INT align, INT* buf_size)
Get record size. o .o....

db_get_record() (HNDLE hDB, HNDLE hKey, void* data,
INT* buf_size, INT align)

221

222

222

224

225

226

226

227

227

228

229

229

230

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002

196

12 appendix E: Midas libraries

Copies an ODB sub-tree to a local C struc-
BUTE. oot e 230

12.8.563 INT db_set_record() (HNDLE hDB, HNDLE hKey, void* data,
INT buf size, INT align)
Copies a local C structure to a ODB sub-
Iree. o 231

12.8.54 INT db_create_record() (HNDLE hDB, HNDLE hKey,
char* key name, char* init_str)
Creates an ODB sub-tree from an ASCII
TePresentation. ... 232

12.8.55 INT db_open_record() (HNDLE hDB, HNDLE hKey, void* ptr,
INT rec_size, WORD access_mode,
void (*dispatcher)(INT, INT, void*),
void* info)
Creates a hot-link between an ODB sub-

tree and o C structure. 234
12.8.56 INT db_close_record() (HNDLE hDB, HNDLE hKey)

Close open record. 235
12.8.57 INT db_send_changed_records() ()

update ODB from local open records. .. 236

12.8.1

#define LAM_SOURCE (c, s)

MACRO Code LAM register with crate and station.

LAM_SOURCE Code the LAM crate and LAM station into a bitwise register.

Parameters: ¢ Crate number
s Slot number

12.8.2

#define LAM_STATION (s)

MACRO Code LAM Station.

LAM_STATION Code the Station number bitwise for the LAM source.

Parameters: s Slot number

This page was generated with the help of DOC++

February 1, 2002 197

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

12.8.3

#define LAM_SOURCE_CRATE (c)

MACRO Convert coded Crate.

LAM_SOURCE_CRATE Convert the coded LAM crate to Crate number.

Parameters: ¢ coded crate

12.8.4

#define LAM_SOURCE _STATION (s)

MACRO Convert coded Sattion.

LAM_SOURCE_STATION Convert the coded LAM station to Station number.

Parameters: s Slot number

12.8.5

#define TRIGGER_MASK (e)

MACRO Trigger mask.

TRIGGER_MASK Extract or set the trigger mask field pointed by the argument.

Parameters: e pointer to the midas event (pevent)

12.8.6

#define EVENT _ID (e)

MACRO event ID.

EVENT_ID Extract or set the event ID field pointed by the argument.

Parameters: e pointer to the midas event (pevent)

This page was generated with the help of DOC++

February 1, 2002 198

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

12.8.7

#define SERIAL_NUMBER (e)

MACRO serial number.

SERIAL_NUMBER Extract or set/reset the serial number field pointed by the argument.

Parameters: e pointer to the midas event (pevent)

12.8.8

#define TIME_STAMP (e)

MACRO Time stamp.

TIME_STAMP Extract or set/reset the time stamp field pointed by the argument.

Parameters: e pointer to the midas event (pevent)

12.8.9

INT cm set_msg print() (INT system mask, INT user.mask, int

(*func)(const char*))

Set message

Description: Set message masks. When a message is generated by calling cm_msg, it can got

to two destinatinons. First a user defined callback routine and second to the ”SYSMSG”
buffer. A user defined callback receives all messages which satisfy the user_mask.

Remarks:

Example: int message_print(const char *msg)

{
char str[160];

memset(str, ’ ’, 159);
str[159] = 0;
if (msgl0] == ’[’)

msg = strchr(msg, ’]’)+2;
memcpy (str, msg, strlen(msg));

This page was generated with the help of DOC++

http://www.linuxsupportline.com/~doc-+-+ February 1, 2002 199

12 appendix E: Midas libraries

ss_printf (0, 20, str);
return 0;

}

cm_set_msg_print (MT_ALL, MT_ALL, message_print);

Return Value: CM_SUCCESS
Parameters: systemmask Bit masks for MERROR, MINFO etc. to send
system messages.
user _mask Bit masks for MERROR, MINFO etc. to send
messages to the user callback.
func Function which receives all printout. By setting
”puts” ;messages are just printed to the screen.

12.8.10

INT cm_msg() (INT message_type, char® filename, INT line, const char*

routine, const char* format, ...)

Returns MIDAS environment variables.

Description: This routine can be called whenever an internal error occurs or an informative
message is produced. Different message types can be enabled or disabled by setting the type
bits via cm_set_msg_ print.

Remarks: Do not add the ”
n” escape carriage control at the end of the formated line as it is already added by the client
on the receiving side.

Example: ..
cm_msg(MINFO, "my program", "This is a information message only);
cm_msg(MERROR, "my program", "This is an error message with status:%d", my_status);
cm_msg(MTALK, "my_program", My program is Done!");

Return Value: CM_SUCCESS
Parameters: message_type See Message Macros.
filename Name of source file where error occured
line Line number where error occured
routine Routine name.
format message to printout, ... Parameters like for

printf()

This page was generated with the help of DOC++

February 1, 2002 200

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

12.8.11

INT cm _msgl() (INT message type, char* filename, INT line, const char*

facility, const char* routine, const char* format, ...)

Redirect messages to a prive log file.

Description: This routine is similar to cm_msg(). It differs from cm_msg() only by the logging
destination being a file given through the argument list i.e:facility.

Remarks: Do not add the ”
n” escape carriage control at the end of the formated line as it is already added by the client
on the receiving side.

Example: The first arg in the following example uses the predefined macro MINFO which handles
automatically the first 3 arguments of the function (see Message Macros.
cm_msgl (MINFO, "my_log_file", "my_program"," My message status:%d", status);

//-———= File my_log_file.log
Thu Nov 8 17:59:28 2001 [my_program] My message status:1

Return Value: CM_SUCCESS

Parameters: message_type See Message Macros.
filename Name of source file where error occured
line Line number where error occured
facility Logging file name
routine Routine name
format message to printout, ... Parameters like for

printf()
12.8.12
INT cm_msg register() (void (*func)(HNDLE, HNDLE,

EVENT_HEADER*, void*))

Register a message dispatch function.

Description: Register a dispatch function for receiving system messages.

Remarks:

This page was generated with the help of DOC++

February 1, 2002 201

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

Example: Excerpt from mlxspeaker.c

//----= receive_message
void receive_message (HNDLE hBuf, HNDLE id, EVENT_HEADER xheader, void *message)
{

char str[256], *pc, *sp;
// print message
printf ("%s\n", (char *)(message));

printf ("evID:%x Mask:%x Serial:%i Size:’%d\n"
,header->event_id
,header->trigger_mask
,header->serial_number
,header->data_size) ;

pc = strchr((char *) (message),’]’)+2;

// skip none talking message
if (header->trigger_mask == MT_TALK ||
header->trigger_mask == MT_USER)

}

int main(int argc, char *argv[])

{

// now connect to server
status = cm_connect_experiment (host_name, exp_name, "Speaker", NULL);
if (status != CM_SUCCESS)

return 1;

// Register callback for messages
cm_msg_register (receive_message) ;

}
Return Value: CM_SUCCESS or bm_open_buffer and bm_request_event return
status
Parameters: func Dispatch function.
12.8.13

INT cm_get_environment() (char® host_name, char® exp_name)

Returns MIDAS environment variables.

Description: Returns MIDAS environment variables.

This page was generated with the help of DOC++

February 1, 2002 202

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

Remarks: This function can be used to evaluate the standard MIDAS environment variables
before connecting to an experiment (see Environment variables). The usual way is that
the host name and experiment name are first derived from the environment variables MI-
DAS_SERVER_HOST and MIDAS_EXPT_NAME. They can then be superseded by com-
mand line parameters with -h and -e flags.

Example: #include <stdio.h>
#include <midas.h>
main(int argc, char xargv[])
{
INT status, i;
char host_name[256],exp_name[32];

// get default values from environment
cm_get_environment (host_name, exp_name);

// parse command line parameters
for (i=1 ; i<argc ; i++)

{
if (argv[i][0] == ’-?)
{
if (i+1 >= argc || argv[i+1]1[0] == ’-?)
goto usage;
if (argv[i]l[1] == ’e’)
strcpy(exp_name, argv[++i]);
else if (argv[il[1] == ’h’)
strcpy (host_name, argv[++i]);
else
{
usage:
printf("usage: test [-h Hostname] [-e Experiment]\n\n");
return 1;
}
}
}

status = cm_connect_experiment (host_name, exp_name, "Test", NULL);
if (status != CM_SUCCESS)

return 1;
...do anyting...
cm_disconnect_experiment () ;
}
Return Value: CM_SUCCESS
Parameters: host_name Contents of MIDAS_SERVER_HOST environ-

ment variable.
expname Contents of MIDAS_EXPT_NAME environment
variable.

This page was generated with the help of DOC++

February 1, 2002 203

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

12.8.14

INT cm_connect_experiment() (char* host_name, char* exp_name, char*

client_name, void (*func)(char*))

Connects to a MIDAS experiment.

Description: This function connects to an existing MIDAS experiment. This must be the first
call in a MIDAS application. It opens three TCP connection to the remote host (one for
RPC calls, one to send events and one for hot-link notifications from the remote host) and
writes client information into the ODB under /System/Clients.

Remarks: All MIDAS applications should evaluate the MIDAS_SERVER_HOST and MI-
DAS_EXPT_NAME environment variables as defaults to the host name and experiment name
(see Environment variables). For that purpose, the function cm_get_environment() should
be called prior to cm_connect_experiment(). If command line parameters -h and -e are used,
the evaluation should be done between cm_get_environment() and cm_connect_experiment().
The function cm_disconnect_experiment() must be called before a MIDAS application exits.

Example: #include <stdio.h>
#include <midas.h>
main(int argc, char xargv[])
{
INT status, i;
char host_name[256],exp_name[32];

// get default values from environment
cm_get_environment (host_name, exp_name);

// parse command line parameters
for (i=1 ; i<argc ; i++)

{
if (argv[i]l[0] == ’-?)
{
if (i+1 >= argc || argv[i+1][0] == ’-?)
goto usage;
if (argv[il[1] == ’e’)
strcpy(exp_name, argv[++i]);
else if (argv[il[1] == ’h’)
strcpy(host_name, argv[++i]);
else
{
usage:
printf ("usage: test [-h Hostname] [-e Experiment]\n\n");
return 1;
}
}
}

status = cm_connect_experiment(host_name, exp_name, "Test", NULL) ;
if (status != CM_SUCCESS)

This page was generated with the help of DOC++

http://www.linuxsupportline.com/~doc-+-+ February 1, 2002 204

12 appendix E: Midas libraries

return 1;
...do operations...
cm_disconnect_experiment () ;

}

Return Value: CM_SUCCESS,

CM_VERSION_MISMATCH MIDAS library version different on local and remote compu
Parameters: host_name Specifies host to connect to. Must be a valid

IP host name.The string can be empty (””) if to
connect to the local computer.

exp_name Specifies the experiment to connect to.If this
string is empty, the number of defined experi-
ments in exptab is checked.If only one experiment
is defined, the function automatically connects to
thisone. If more than one experiment is defined,
a list is presented and the usercan interactively
select one experiment.

client name Client name of the calling program as it can be
seen byothers (like the scl command in ODBE-
dit).

func Callback function to read in a password if secu-
rity hasbeen enabled. In all command line appli-
cations this function is NULL whichinvokes an in-
ternal ss_gets() function to read in a password.In
windows environments (MS Windows, X Win-
dows) a function can be supplied toopen a dialog
box and read in the password. The argument of
this function mustbe the returned password.

12.8.15

INT cm_disconnect_experiment() (void)

Disconnect from o MIDAS experiment.

Description: Disconnect from a MIDAS experiment.

Remarks: Should be the last call to a MIDAS library function in an application before it exits.
This function removes the client information from the ODB, disconnects all TCP connections
and frees all internal allocated memory. See cm_connect_experiment for example.

Return Value: CM_SUCCESS

This page was generated with the help of DOC++

February 1, 2002 205

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

12.8.16
INT cm_get_experiment_database() (HNDLE* hDB, HNDLE* hKey-
Client)

Get the handle to the ODB

Description: Get the handle to the ODB from the currently connected experiment.

Remarks: This function returns the handle of the online database (ODB) which can be used in
future db_xxx() calls. The hkeyclient key handle can be used to access the client information
in the ODB. If the client key handle is not needed, the parameter can be NULL.

Example: HNDLE hDB, hkeyclient;
char name[32];
int size;
db_get_experiment_database(&hdb, &hkeyclient);
size = sizeof (name);
db_get_value(hdb, hkeyclient, "Name", name, &size, TID_STRING);
printf ("My name is %s\n", name);

Return Value: CM_SUCCESS
Parameters: hDB Database handle.
hKeyClient Handle for key where search starts, zero for root.
key_name Name of key to search, can contain directories.
12.8.17

INT cm_register_transition (INT transition, INT (*func)(INT, char*))

Registers a callback function for run transitions.

Description: Registers a callback function for run transitions.

Remarks: This function internally registers the transition callback function and pub-
lishes its request for transition notification by writing the transition bit to /Sys-
tem/Clients/<pid>/Transition Mask. Other clients making a transition scan the transition
masks of all clients and call their transition callbacks via RPC.

Clients can register for transitions (Start/Stop/Pause/Resume) or for notifications before or
after a transition occurs (Pre-start/Post-start/Pre-stop/Post-stop). The logger for example
opens the logging files on pre-start and closes them on post-stop.

The callback function returns CM_SUCCESS if it can perform the transition or a value larger
than one in case of error. An error string can be copied into the error variable.

This page was generated with the help of DOC++

February 1, 2002 206

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

Example: The callback function will be called on transitions from inside the cm_yield() function
which therefore must be contained in the main program loop.

INT start(INT run_number, char *error)
{
if (<not ok>)
{
strcpy(error, "Cannot start because ...");
return 2;
}
printf ("Starting run %d\n", run_number);
return CM_SUCCESS;
}
main()

{

cm_register_transition(TR_START, start);
do
{
status = cm_yield(1000);
} while (status != RPC_SHUTDOWN &&
status '= SS_ABORT);

Return Value: CM_SUCCESS

Parameters: transition Transition to register for.
Can be TR_PRESTART,
TR_START, TR_POSTSTART, TR_PRSTOP,
TR_.STOP, TR_POSTSTOP, TR_PAUSE or
TR-RESUME.

func Callback function.
12.8.18

INT bm _open_buffer() (char* buffer name, INT buffer size, INT*
buffer_handle)

open an event buffer.

Description: Open an event buffer.

Remarks: Two default buffers are created by the system. The ”SYSTEM” buffer is used to
exchange events and the "SYSMSG” buffer is used to exchange system messages. The
name and size of the event buffers is defined in midas.h as EVENT BUFFER_NAME and
EVENT_BUFFER_SIZE. Following example opens the "SYSTEM?” buffer, requests events
with ID 1 and enters a main loop. Events are then received in process_event()

This page was generated with the help of DOC++

February 1, 2002 207

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

Example: #include <stdio.h>
#include "midas.h"
void process_event (HNDLE hbuf, HNDLE request_id,
EVENT_HEADER x*pheader, void *pevent)
{
printf ("Received event #Jd\r",
pheader—>serial_number) ;
}
main()
{
INT status, request_id;
HNDLE hbuf;
status = cm_connect_experiment ("pc810", "Sample", "Simple Analyzer", NULL);
if (status != CM_SUCCESS)
return 1;
bm_open_buffer (EVENT_BUFFER_NAME, EVENT_BUFFER_SIZE, &hbuf);
bm_request_event (hbuf, 1, TRIGGER_ALL, GET_ALL, request_id, process_event);

do

{

status = cm_yield(1000);

} while (status != RPC_SHUTDOWN && status !'= SS_ABORT);
cm_disconnect_experiment () ;

return 0O;

Return Value: BM_SUCCESS,
BM_NO_SHM Shared memory cannot be created
BM_NO_MUTEX Mutex cannot be created
BM_NO_MEMORY Not enough memory to create buffer descriptor
BM_MEMSIZE_MISMATCH Buffer size conflicts with an existing buffer ofdifferent size
BM_INVALID_PARAM Invalid parameter
Parameters: buffer name Name of buffer
buffer_size Size of buffer in bytes
buffer handle Buffer handle returned by function

12.8.19

INT bm _close_buffer() (INT buffer_handle)

close event buffer.

Description: Closes an event buffer previously opened with bm_open_buffer().

Return Value: BM_SUCCESS, BM_INVALID_HANDLE
Parameters: buffer_handle buffer handle

This page was generated with the help of DOC++

February 1, 2002 208

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

12.8.20

INT bm_set_cache_size() (INT buffer_handle, INT readsize, INT

write_size)

Turns on/off caching for reading and writing to o buffer.

Description: Modifies buffer cache size.

Remarks: Without a buffer cache, events are copied to/from the shared memory event by event.

To protect processed from accessing the shared memory simultaneously, semaphores are
used. Since semaphore operations are CPU consuming (typically 50-100us) this can slow
down the data transfer especially for small events. By using a cache the number of semaphore
operations is reduced dramatically. Instead writing directly to the shared memory, the events
are copied to a local cache buffer. When this buffer is full, it is copied to the shared memory
in one operation. The same technique can be used when receiving events.

The drawback of this method is that the events have to be copied twice, once to the cache
and once from the cache to the shared memory. Therefore it can happen that the usage
of a cache even slows down data throughput on a given environment (computer type, OS
type, event size). The cache size has therefore be optimized manually to maximize data

throughput.
Return Value: BM_SUCCESS, BM_INVALID HANDLE, BM_NO_MEMORY,
BM_INVALID PARAM
Parameters: buffer handle buffer handle obtained via bm_open_buffer()
read_size cache size for reading events in bytes, zero for no
cache
write_size cache size for writing events in bytes, zero for no
cache
12.8.21

INT bm_compose_event() (EVENT_HEADER* event_header, short int
event_id, short int trigger mask, DWORD size,
DWORD serial)

compose the Midas event header.

Description: Compose a Midas event header.

This page was generated with the help of DOC++

February 1, 2002 209

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

Remarks: An event header can usually be set-up manually or through this routine. If the
data size of the event is not known when the header is composed, it can be set later with
event_header->data-size = <...> Following structure is created at the beginning of an event

typedef struct {

short int event_id;
short int trigger_mask;
DWORD serial_number;
DWORD time_stamp;
DWORD data_size;

} EVENT_HEADER;

Example: char event[1000];
bm_compose_event ((EVENT_HEADER *)event, 1, 0, 100, 1);
* (event+sizeof (EVENT_HEADER)) = <...>

Return Value: BM_SUCCESS
Parameters: event_header pointer to the event header
event_id event ID of the event
trigger mask trigger mask of the event
size size if the data part of the event in bytes
serial serial number
12.8.22

INT bm_request_event() (HNDLE buffer_handle, short int event_id, short
int trigger_mask, INT sampling type, HN-
DLE* request_id, void (*func)(HNDLE, HN-
DLE, EVENT_HEADER¥, void*))

event request.

Description: Place an event request based on certain characteristics.

Remarks: Multiple event requests can be placed for each buffer, which are later identified by
their request ID. They can contain different callback routines. Example see bm_open_buffer
and bm _receive_event

Example:

Return Value: BM_SUCCESS,
BM_NO_MEMORY too many requests. The valueMAX_EVENT_REQUESTS in midas.h

This page was generated with the help of DOC++

February 1, 2002 210

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

Parameters: buffer_handle
event_id

trigger mask

sampling type

request_id

func

12.8.23

buffer handle obtained via bm_open_buffer()
event ID for requested events. Use EVEN-
TID_ALLto receive events with any ID.

trigger mask for requested events.The requested
events must have at least one bit in itstrigger
mask common with the requested trigger mask.
Use TRIGGER_ALL toreceive events with any
trigger mask.

specifies how many events to receive.A value of
GET_ALL receives all events whichmatch the
specified event ID and trigger mask. If the
events are consumed slowerthan produced, the
producer is automatically slowed down. A value
of GET_SOMEreceives as much events as possible
without slowing down the producer. GET_ALL
istypically used by the logger, while GET_SOME
is typically used by analyzers.

request ID returned by the function.This ID is
passed to the callback routine and mustbe used
in the bm_delete_request() routine.

allback routine which gets called when an event
of thespecified type is received.

INT bm _delete request() (INT request_id)

delete event request.

Description: Deletes an event request previously done with bm_request_event().

Remarks: When an event request gets deleted, events of that requested type are not received
any more. When a buffer is closed via bm_close_buffer(), all event requests from that buffer

are deleted automatically

Example:

Return Value: BM_SUCCESS, BM_INVALID HANDLE

Parameters: request_id request identifier given by bm_request_event()
12.8.24

async_flag)

INT bm _send_event() (INT buffer_handle, void* source, INT buf size, INT

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 211

12 appendix E: Midas libraries

send event to buffer.

Description: Sends an event to a buffer.

Remarks: This function check if the buffer has enough space for the event, then copies the event
to the buffer in shared memory. If clients have requests for the event, they are notified via
an UDP packet.

Example: char event[1000];
// create event with ID 1, trigger mask O, size 100 bytes and serial number 1
bm_compose_event ((EVENT_HEADER *) event, 1, 0, 100, 1);

// set first byte of event
* (event+sizeof (EVENT_HEADER)) = <...>
#include <stdio.h>
#include "midas.h"
main()
{
INT status, i;
HNDLE hbuf;
char event[1000];
status = cm_connect_experiment("", "Sample", "Producer", NULL);
if (status != CM_SUCCESS)
return 1;
bm_open_buffer (EVENT_BUFFER_NAME, EVENT_BUFFER_SIZE, &hbuf) ;

// create event with ID 1, trigger mask O, size 100 bytes and serial number 1
bm_compose_event ((EVENT_HEADER *) event, 1, 0, 100, 1);

// set event data

for (i=0 ; i<100 ; i++)

* (event+sizeof (EVENT_HEADER)+i) = i;

// send event

bm_send_event (hbuf, event, 100+sizeof (EVENT_HEADER), SYNC);
cm_disconnect_experiment () ;

return O;
}

Return Value: BM_SUCCESS,
BM_ASYNC_RETURN Routine called with async_flag == TRUE andbuffer has not enot
BM_NO_MEMORY Event is too large for network buffer or event buffer.One has to incre

Parameters: buffer handle Buffer handle obtained via bm_open_buffer()
source Address of event buffer
buf_size Size of event including event header in bytes
async_flag Synchronous/asynchronous flag. If FALSE, the

functionblocks if the buffer has not enough
free space to receive the event.If TRUE,
the function returns immediately with avalue
of BM_ASYNC_RETURN without writing the
event to the buffer

This page was generated with the help of DOC++

February 1, 2002 212

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

12.8.25

INT bm_flush_cache() (INT buffer_handle, INT async_flag)

empty write cache.

Description: Empty write cache.

Remarks: This function should be used if events in the write cache should be visible to the
consumers immediately. It should be called at the end of each run, otherwise events could
be kept in the write buffer and will flow to the data of the next run.

Example:
Return Value: BM_SUCCESS,
BM_ASYNC_RETURN Routine called with async_flag == TRUEand buffer has not enot
BM_NO_MEMORY Event is too large for network buffer or event buffer.One has to incre
Parameters: buffer handle Buffer handle obtained via bm_open_buffer()
async_flag Synchronous/asynchronous flag.If FALSE, the
function blocks if the buffer has notenough free
space to receive the full cache. If TRUE,
the function returnsimmediately with a value
of BM_ASYNC_RETURN without writing the
cache.
12.8.26

INT bm_receive_event() (INT buffer_handle, void* destination, INT*
buf_size, INT async_flag)

receive event from buffer.

Description: Receives events directly.

Remarks: This function is an alternative way to receive events without a main loop. It can
be used in analysis systems which actively receive events, rather than using callbacks. A
analysis package could for example contain its own command line interface. A command
like ”receive 1000 events” could make it necessary to call bm_receive_event() 1000 times in
a row to receive these events and then return back to the command line prompt.

This page was generated with the help of DOC++

February 1, 2002 213

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

Example: The according bm_request_event() call contains NULL as the callback routine to indi-
cate that bm_receive_event() is called to receive events.

#include <stdio.h>

#include "midas.h"

void process_event (EVENT_HEADER *pheader)
{

printf ("Received event #Jd\r",
pheader->serial_number) ;

}

main()

{

INT status, request_id;

HNDLE hbuf;

char event_buffer[1000];

status = cm_connect_experiment("", "Sample",

"Simple Analyzer", NULL);

if (status != CM_SUCCESS)

return 1;

bm_open_buffer (EVENT_BUFFER_NAME, EVENT_BUFFER_SIZE, &hbuf);
bm_request_event (hbuf, 1, TRIGGER_ALL, GET_ALL, request_id, NULL);

do

{

size = sizeof (event_buffer);

status = bm_receive_event (hbuf, event_buffer, &size, ASYNC);
if (status == CM_SUCCESS)

process_event ((EVENT_HEADER *) event_buffer);
<...do something else...>

status = cm_yield(0);

} while (status != RPC_SHUTDOWN &&

status !'= SS_ABORT);
cm_disconnect_experiment () ;

return O;
}
Return Value: BM_SUCCESS,
BM_TRUNCATED The event is larger than the destination buffer and wastherefore trun
BM_ASYNC_RETURN No event available
Parameters: buffer_handle buffer handle
destination destination address where event is written to
buf _size size of destination buffer on input, size of event
plusheader on return.
async_flag Synchronous/asynchronous flag. If FALSE, the

functionblocks if no event is available. If TRUE,
the function returns immediatelywith a value
of BM_ASYNC_RETURN without receiving any
event.

This page was generated with the help of DOC++

February 1, 2002 214

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

12.8.27

INT bm_empty_buffers() ()

empty event buffer.

Description: Clears event buffer and cache.

Remarks: If an event buffer is large and a consumer is slow in analyzing events, events are
usually received some time after they are produced. This effect is even more experienced if
a read cache is used (via bm_set_cache_size()). When changes to the hardware are made in
the experience, the consumer will then still analyze old events before any new event which
reflects the hardware change. Users can be fooled by looking at histograms which reflect the
hardware change many seconds after they have been made.

To overcome this potential problem, the analyzer can call bm_empty_buffers() just after the
hardware change has been made which skips all old events contained in event buffers and
read caches. Technically this is done by forwarding the read pointer of the client. No events
are really deleted, they are still visible to other clients like the logger.

Note that the front-end also contains write buffers which can delay the delivery of events.
The standard front-end framework mfe.c reduces this effect by flushing all buffers once every

second.
Example:
Return Value: BM_SUCCESS
Parameters: void
12.8.28

void bk_init() (void* event)

Initialize an event.

Description: Initializes an event for Midas banks structure.

Remarks: Before banks can be created in an event, bk_init() has to be called first.

Return Value: void
Parameters: event pointer to the area of event

This page was generated with the help of DOC++

February 1, 2002 215

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

12.8.29

void bk_init32() (void* event)

Initialize an event (> 32K Bytes).

Description: Initializes an event for Midas banks structure for large. bank size (> 32KBytes)

Remarks: Before banks can be created in an event, bk_init32() has to be called first.

Return Value: void
Parameters: event pointer to the area of event
12.8.30

INT bk_size() (void* event)

compute event size.

Description: Returns the size of an event containing banks.

Remarks: The total size of an event is the value returned by bk _size() plus the size of the event
header (sizeof(EVENT_HEADER)).

Return Value: number of bytes contained in data area of event
Parameters: event pointer to the area of event
12.8.31

void bk_create() (void* event, char®* name, WORD type, void* pdata)

Create a bank.

Description: Create a Midas bank.

Remarks: The data pointer pdata must be used as an address to fill a bank. It is incremented
with every value written to the bank and finally points to a location just after the last byte
of the bank. It is then passed to the function bk_close() to finish the bank creation.

This page was generated with the help of DOC++

February 1, 2002 216

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

Example: INT *pdata;
bk_init(pevent);
bk_create(pevent, "ADCO", TID_INT, &pdata);
*pdatat+ = 123
*pdatat+ = 456
bk_close(pevent, pdata);

Return Value: void
Parameters: event pointer to the data area
name of the bank, must be exactly 4 charaters
type type of bank, one of the Midas Data Types values
defined inmidas.h
pdata pointer to the data area of the newly created bank

12.8.32

INT bk_close() (void* event, void* pdata)

Close bank.

Description: Close the Midas bank priviously created by bk_create.

Remarks: The data pointer pdata must be obtained by bk_create() and used as an address to
fill a bank. It is incremented with every value written to the bank and finally points to a
location just after the last byte of the bank. It is then passed to bk_close() to finish the bank

creation
Return Value: number of bytes contained in bank
Parameters: event pointer to current composed event
pdata pointer to the data
12.8.33

INT bk_locate() (void* event, char* name, void* pdata)

loate a bank in event.

Description: Locates a MIDAS bank of given name inside an event.

Remarks:

This page was generated with the help of DOC++

February 1, 2002 217

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

Example:
Return Value: number of values inside the bank
Parameters: event pointer to current composed event
name bank name to look for
pdata pointer to data area of bank, NULL if bank not
found
12.8.34

INT bk_iterate() (void* event, BANK** pbk, void* pdata)

Retrieve banks pointer from current event.

Description: Iterates through banks inside an event.

Remarks: The function can be used to enumerate all banks of an event. The returned pointer
to the bank header has following structure:

typedef struct {
char name [4] ;

WORD type;
WORD data_size;
} BANK;

where type is a TID xxx value and data_size the size of the bank in bytes.

Example: BANK *pbk;

INT size;

void *pdata;

char name[5];

pbk = NULL;

do

{
size = bk_iterate(event, &pbk, &pdata);
if (pbk == NULL)

break;
* ((DWORD *)name) = *((DWORD *) (pbk)->name) ;
name[4] = 0;

printf ("bank %s found\n", name);
} while(TRUE);

This page was generated with the help of DOC++

February 1, 2002 218

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

Return Value: Size of bank in bytes
Parameters: event Pointer to data area of event.
pbk pointer to the bank header, must be NULL for
the first call tothis function.
pdata Pointer to the bank header, must be NULL for
the firstcall to this function

12.8.35

INT bk_swap() (void* event, BOOL force)

Swap the content of an event.

Description: Swaps bytes from little endian to big endian or vice versa for a whole event.

Remarks: An event contains a flag which is set by bk_init() to identify the endian format of
an event. If force is FALSE, this flag is evaluated and the event is only swapped if it is in
the "wrong” format for this system. An event can be swapped to the "wrong” format on
purpose for example by a front-end which wants to produce events in a "right” format for a
back-end analyzer which has different byte ordering.

Return Value: 1==event has been swap, 0==event has not been swapped.
Parameters: event pointer to data area of event
force If TRUE, the event is always swapped, if FALSE,
the eventis only swapped if it is in the wrong
format.

12.8.36

INT db_delete_key() (HNDLE hDB, HNDLE hKey, BOOL follow_links)

Delete ODB key.

Description: Delete a subtree in a database starting from a key (including this key).
Remarks:

Example:
status = db_find_link(hDB, 0, str, &hkey);
if (status != DB_SUCCESS)

{
cm_msg (MINFO, "my_delete"," "Cannot find key %s", str);

This page was generated with the help of DOC++

February 1, 2002 219

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

return;

}

status = db_delete_key(hDB, hkey, FALSE);
if (status !'= DB_SUCCESS)

{
cm_msg (MERROR, "my_delete"," "Cannot delete key %s", str);
return;
}
Return Value: DB_SUCCESS, DB_INVALID HANDLE, DB_NO_ACCESS,
DB_OPEN_RECORD
Parameters: hDB ODB handle obtained via
cm_get_experiment_database().
Handle for key where search starts, zero for root.
follow_1links Follow links when TRUE.
12.8.37

INT db_find key() (HNDLE hDB, HNDLE hKey, char* key name, HN-
DLE* subhKey)

Retrieve key handle from key name.

Description: Returns key handle for a key with a specific name.

Remarks: Keys can be accessed by their name including the directory or by a handle. A key
handle is an internal offset to the shared memory where the ODB lives and allows a much
faster access to a key than via its name. The function db_find_key() must be used to convert
a key name to a handle. Most other database functions use this key handle in various
operations.

Example: HNDLE hkey, hsubkey;
// use full name, start from root
db_find_key(hDB, 0, "/Runinfo/Run number", &hkey);
// start from subdirectory
db_find_key(hDB, O, "/Runinfo", &hkey);
db_find_key(hdb, hkey, "Run number", &hsubkey);

Return Value: DB_SUCCESS, DB_INVALID_HANDLE, DB_NO_ACCESS,
DB_NO_KEY

This page was generated with the help of DOC++

February 1, 2002 220

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

Parameters: hDB ODB handle obtained via
cm_get_experiment_database().
hKey Handle for key where search starts, zero for root.

key name Name of key to search, can contain directories.
subhKey Returned handle of key, zero if key cannot be
found.

12.8.38
INT db_set_value() (HNDLE hDB, HNDLE hKeyRoot, char* key_name,
void* data, INT data_size, INT num_values, DWORD
type)

Sets key data in ODB.

Description: Set value of a single key.

Remarks: The function sets a single value or a whole array to a ODB key. Since the data buffer
is of type void, no type checking can be performed by the compiler. Therefore the type has
to be explicitly supplied, which is checked against the type stored in the ODB. key_name can
contain the full path of a key (like: ” /Equipment/Trigger/Settings/Levell”) while hkey is
zero which refers to the root, or hkey can refer to a sub-directory (like /Equipment/Trigger)
and key name is interpreted relative to that directory like ”Settings/Levell”.

Example: INT levell;
db_get_value(hDB, 0, "/Equipment/Trigger/Settings/Levell",
&levell, sizeof(levell), TID_INT);

Return Value: DB_SUCCESS, DB_INVALID_HANDLE, DB_NO_ACCESS,
DB_TYPE_MISMATCH
Parameters: hDB ODB handle obtained via
cm_get_experiment_database().
hKeyRoot Handle for key where search starts, zero for root.
key_name Name of key to search, can contain directories.
data Address of data.

data_size Size of data (in bytes).
num_values Number of data elements.
type Type of key, one of TID xxx (see Midas Data

Types)

This page was generated with the help of DOC++

February 1, 2002 221

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

12.8.39

INT db_get_value() (HNDLE hDB, HNDLE hKeyRoot, char* key_name,
void* data, INT* buf_size, DWORD type)

Returns key data from the ODB.

Description: Get value of a single key.

Remarks: The function returns single values or whole arrays which are contained in an ODB
key. Since the data buffer is of type void, no type checking can be performed by the
compiler. Therefore the type has to be explicitly supplied, which is checked against the
type stored in the ODB. keyname can contain the full path of a key (like: ”/Equip-
ment/Trigger /Settings/Levell”) while hkey is zero which refers to the root, or hkey can
refer to a sub-directory (like: /Equipment/Trigger) and key name is interpreted relative to
that directory like ”Settings/Levell”.

Example: INT levell, size;

size = sizeof (levell);
db_get_value(hDB, 0, "/Equipment/Trigger/Settings/Levell",
&levell, &size, TID_INT);

Return Value: DB_SUCCESS, DB_INVALID HANDLE, DB_NO_ACCESS,
DB_TYPE_MISMATCH,DB_.TRUNCATED,
DB_NO_KEY

Parameters: hDB ODB handle obtained via

cm_get_experiment_database().
hKeyRoot Handle for key where search starts, zero for root.
keyname Name of key to search, can contain directories.
data Address of data.
buf_size Maximum buffer size on input, number of written
bytes on return.
type Type of key, one of TID_xxx (see Midas Data

Types)

12.8.40

INT db_enum key() (HNDLE hDB, HNDLE hKey, INT index, HNDLE*
subkey_handle)

Enumerates keys in a ODB directory.

This page was generated with the help of DOC++

February 1, 2002 222

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

Description: Enumerate subkeys from a key, follow links.

Remarks: hkey must correspond to a valid ODB directory. The index is usually incremented in
a loop until the last key is reached. Information about the sub-keys can be obtained with
db_get key(). If a returned key is of type TID_KEY, it contains itself sub-keys. To scan a
whole ODB sub-tree, the function db_scan_tree() can be used.

Example: INT 1i;
HNDLE hkey, hsubkey;

KEY key;

db_find_key(hdb, 0, "/Runinfo", &hkey);
for (i=0 ; ; i++)

{

db_enum_key(hdb, hkey, i, &hsubkey);
if (!hSubkey)

break; // end of list reached

// print key name

db_get_key(hdb, hkey, &key);

printf ("%s\n", key.name);

}
Return Value: DB_SUCCESS, DB_INVALID_HANDLE,
DB_NO_MORE_SUBKEYS
Parameters: hDB ODB handle obtained via
cm_get_experiment_database().
hKey Handle for key where search starts, zero for root.
index Subkey index, sould be initially 0, then-
incremented in each call until subhKey
becomes zero and the functionreturns
DB_.NO_MORE_SUBKEYS
subkey handle Handle of subkey which can be used indb_get_key
and db_get_data
12.8.41

INT db_get_key() (HNDLE hDB, HNDLE hKey, KEY* key)

Returns information about an ODB key.

Description: Get key structure from a handle.

Remarks: The KEY structure has following format:

typedef struct {

DWORD type; // TID_xxx type

INT num_values; // number of values

char name [NAME_LENGTH] ; // name of variable

INT data; // Address of variable (offset)

This page was generated with the help of DOC++

February 1, 2002 223

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

INT total_size; // Total size of data block
INT item_size; // Size of single data item
WORD access_mode; // Access mode
WORD lock_mode; // Lock mode
WORD exclusive_client; // Index of client in excl. mode
WORD notify_count; // Notify counter
INT next_key; // Address of next key
INT parent_keylist; // keylist to which this key belongs
INT last_written; // Time of last write action
} KEY;

Most of these values are used for internal purposes, the values which are of public interest are
type, num_values, and name. For keys which contain a single value, num_values equals to one
and total size equals to item_size. For keys which contain an array of strings (TID_STRING),
item_size equals to the length of one string.

Example: KEY key;
HNDLE hkey;
db_find_key(hDB, 0, "/Runinfo/Run number", &hkey) ;
db_get_key (hDB, hkey, &key);
printf ("The run number is of type %s\n", rpc_tid_name(key.type));

Return Value: DB_SUCCESS, DB_INVALID_HANDLE
Parameters: DB ODB handle obtained via
cm_get_experiment_database().
hKey Handle for key where search starts, zero for root.
key Pointer to KEY stucture.

12.8.42
INT db_get_data() (HNDLE hDB, HNDLE hKey, void* data, INT*
buf size, DWORD type)

Returns data from a key.

Description: Get key data from a handle

Remarks: The function returns single values or whole arrays which are contained in an ODB key.
Since the data buffer is of type void, no type checking can be performed by the compiler.
Therefore the type has to be explicitly supplied, which is checked against the type stored in
the ODB.

Example: HNLDE hkey;
INT run_number, size;
// get key handle for run number
db_find_key(hDB, O, "/Runinfo/Run number", &hkey) ;

This page was generated with the help of DOC++

February 1, 2002 224

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

// return run number
size = sizeof (run_number);
db_get_data(hDB, hkey, &run_number, &size,TID_INT);

Return Value: DB_SUCCESS, DB_INVALID HANDLE, DB._TRUNCATED,
DB_TYPE MISMATCH
Parameters: hDB ODB handle obtained via
cm_get_experiment_database().
hKey Handle for key where search starts, zero for root.
buf_size Size of data buffer.
type Type of key, one of TID xxx (see Midas Data
Types).
12.8.43

INT db_get_data_index() (HNDLE hDB, HNDLE hKey, void* data, INT*
buf size, INT index, DWORD type)

Get single element of data from an array handle.

Description: returns a single value of keys containing arrays of values.

Remarks: The function returns a single value of keys containing arrays of values.

Example:
Return Value: DB_SUCCESS, DB_INVALID HANDLE, DB_TRUNCATED,
DB_OUT_OF_RANGE
Parameters: hDB ODB handle obtained via
cm_get_experiment_database().
hKey Handle for key where search starts, zero for root.
data Size of data buffer.
index Index of array [0..n-1].
type Type of key, one of TID xxx (see Midas Data
Types).
12.8.44

INT db_set_data() (HNDLE hDB, HNDLE hKey, void* data, INT buf size,
INT num _values, DWORD type)

Sets data of a key.

This page was generated with the help of DOC++

February 1, 2002 225

http:/ /www. linuxsupportline.com/~doc-+-+

12

appendix E: Midas libraries

Description: Set key data from a handle. Adjust number of values if previous data has different

size.
Remarks:

Example: HNLDE hkey;
INT run_number;

// get key handle for run number
db_find_key(hDB, 0, "/Runinfo/Run number", &hkey);

// set run number

db_set_data(hDB, hkey, &run_number, sizeof (run_number) ,TID_INT);

Return Value:
Parameters:

12.8.45

DB_SUCCESS,
hDB

hKey

data
buf_size
num_values

type

DB_INVALID_HANDLE, DB_.TRUNCATED
ODB handle obtained via
cm_get_experiment_database().

Handle for key where search starts, zero for root.
Buffer from which data gets copied to.

Size of data buffer.

Number of data values (for arrays).

Type of key, one of TID xxx (see Midas Data

Types).

INT db_set_data_index() (HNDLE hDB, HNDLE hKey, void* data, INT

data_size, INT index, DWORD type)

Set individual values of a key array.

Description: Set key data for a key which contains an array of values.

Remarks: This function sets individual values of a key containing an array. If the index is larger

than the array size, the array is extended and the intermediate values are set to zero.

Example:
Return Value:

Parameters:

DB_SUCCESS,

hDB

hKey
data
data_size
index

type

DB_INVALID_HANDLE, DB_NO_ACCESS,
DB_TYPE_MISMATCH
ODB handle obtained via
cm_get_experiment_database().
Handle for key where search starts, zero for root.
Pointer to single value of data.

Size of single data element.
Type of key, one of TID xxx (see Midas Data
Types).

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 226

12 appendix E: Midas libraries

12.8.46

INT db_load() (HNDLE hDB, HNDLE hKeyRoot, char* filename, BOOL
bRemote)

Loads ODB entries from an ASCII file.

Description: Load a branch of a database from an .ODB file.

Remarks: This function is used by the ODBEdit command load. For a description of the ASCII
format, see db_copy(). Data can be loaded relative to the root of the ODB (hkey equal zero)
or relative to a certain key.

Example:
Return Value: DB_SUCCESS, DB_INVALID _HANDLE, DB_FILE_ERROR
Parameters: hDB ODB handle obtained via
cm_get_experiment_database().
hKeyRoot Handle for key where search starts, zero for root.
filename Filename of .ODB file.
bRemote If TRUE, the file is loaded by the server process
on theback-end, if FALSE, it is loaded from the
current process
12.8.47

INT db_copy() (HNDLE hDB, HNDLE hKey, char* buffer, INT*
buffer_size, char* path)

Copies part of the ODB into an ASCII string.

Description: Copy an ODB subtree in ASCII format to a buffer

Remarks: This function converts the binary ODB contents to an ASCII. The function db_paste()
can be used to convert the ASCII representation back to binary ODB contents. The functions
db_load() and db_save() internally use db_copy() and db_paste(). This function converts the
binary ODB contents to an ASCII representation of the form:

o for single value:

[ODB path]
key name = type : value

This page was generated with the help of DOC++

February 1, 2002 227

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

e for strings:

key name = STRING : [size] string contents

e for arrayes (type can be BYTE, SBYTE, CHAR, WORD, SHORT, DWORD, INT,
BOOL, FLOAT, DOUBLE, STRING or LINK):

key name = typel[sizel

[0] valueO
[1] valuel
[2] value2
Example:
Return Value: DB_SUCCESS, DB_TRUNCATED, DB.NO_MEMORY
Parameters: hDB ODB handle obtained via
cm_get_experiment_database().
hKey Handle for key where search starts, zero for root.
buffer ASCII buffer which receives ODB contents.
buffer_size Size of buffer, returns remaining space in buffer.
path Internal use only, must be empty (””).
12.8.48

INT db_paste() (HNDLE hDB, HNDLE hKeyRoot, char* buffer)

Pastes values into the ODB from an ASCII string.

Description: Copy an ODB subtree in ASCII format from a buffer

Remarks:

Example:

Return Value: DB_SUCCESS, DB_TRUNCATED, DB.NO_.MEMORY
Parameters: hDB ODB handle obtained via,

cm_get_experiment_database().
hKeyRoot Handle for key where search starts, zero for root.
buffer NULL-terminated buffer

This page was generated with the help of DOC++

February 1, 2002 228

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

12.8.49

INT db_save() (HNDLE hDB, HNDLE hKey, char* filename, BOOL bRe-

mote)

Save ODB entries to an ASCII file.

Description: Save a branch of a database to an .ODB file

Remarks: This function is used by the ODBEdit command save. For a description of the ASCII
format, see db_copy(). Data of the whole ODB can be saved (hkey equal zero) or only a

sub-tree.

Example:

Return Value: DB_SUCCESS, DB_FILE_ERROR

Parameters: hDB ODB handle obtained via

cm_get_experiment_database().
hKey Handle for key where search starts, zero for root.
filename Filename of .ODB file.
bRemote Flag for saving database on remote server.
12.8.50

INT db_sprintf() (char* string, void* data, INT datasize, INT index,
DWORD type)

Convert an ODB entry to a string.

Description: Convert a database value to a string according to its type.

Remarks: This function is a convenient way to convert a binary ODB value into a string depend-
ing on its type if is not known at compile time. If it is known, the normal sprintf() function
can be used.

Example:
for (j=0 ; j<key.num_values ; j++)
{
db_sprintf (pbuf, pdata, key.item_size, j, key.type);
strcat (pbuf, "\n");
}

This page was generated with the help of DOC++

February 1, 2002 229

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

Return Value: DB_SUCCESS

Parameters: string output ASCII string of data.
data Value data.
data size Size of single data element.
index Index for array data.
type Type of key, one of TID xxx (see Midas Data

Types).
12.8.51

INT db_get_record _size() (HNDLE hDB, HNDLE hKey, INT align, INT*

buf size)

Get record size.

Description: Calculates the size of a record.

Remarks:
Example:
Return Value: DB_SUCCESS, DB_INVALID HANDLE,
DB_TYPE MISMATCH,DB_.STRUCT_SIZE_ MISMATCH,
DB NO_KEY
Parameters: hDB ODB handle obtained via
cm_get_experiment_database().
hKey Handle for key where search starts, zero for root.
align Byte alignment calculated by the stub andpassed
to the rpc side to align data according to local
machine. Must be zerowhen called from user level
buf_size Size of record structure
12.8.52

INT db_get_record() (HNDLE hDB, HNDLE hKey, void* data, INT*
buf size, INT align)

Copies an ODB sub-tree to a local C structure.

Description: Copy a set of keys to local memory.

This page was generated with the help of DOC++

February 1, 2002 230

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

Remarks: An ODB sub-tree can be mapped to a C structure automatically via a hot-link using
the function db_open_record() or manually with this function. Problems might occur if the
ODB sub-tree contains values which don’t match the C structure. Although the structure
size is checked against the sub-tree size, no checking can be done if the type and order of
the values in the structure are the same than those in the ODB sub-tree. Therefore it is
recommended to use the function db_create_record() before db_get_record() is used which
ensures that both are equivalent.

Example: struct {
INT levell;
INT level2;
} trigger_settings;
char *trigger_settings_str =
"[Settings]\n\
levell = INT : O\n\
level2 = INT : O";

main()

{
HNDLE hDB, hkey;
INT size;

cm_get_experiment_database (&hDB, NULL) ;

db_create_record(hDB, 0, "/Equipment/Trigger", trigger_settings_str);
db_find_key(hDB, 0, "/Equipment/Trigger/Settings", &hkey);

size = sizeof (trigger_settings);

db_get_record(hDB, hkey, &trigger_settings, &size, 0);

Return Value: DB_SUCCESS, DB_INVALID HANDLE,
DB_STRUCT_SIZE_MISMATCH
Parameters: hDB ODB handle obtained via
cm_get_experiment_database().
hKey Handle for key where search starts, zero for root.
buf_size Size of data structure, must be obtained via
sizeof RECORD-NAME).
align Byte alignment calculated by the stub andpassed
to the rpc side to align data according to local
machine. Must be zerowhen called from user
level.
12.8.53

INT db_set_record() (HNDLE hDB, HNDLE hKey, void* data, INT
buf size, INT align)

Copies a local C structure to a ODB sub-tree.

This page was generated with the help of DOC++

February 1, 2002 231

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

Description: Copy a set of keys from local memory to the database.

Remarks: An ODB sub-tree can be mapped to a C structure automatically via a hot-link using
the function db_open_record() or manually with this function. Problems might occur if the
ODB sub-tree contains values which don’t match the C structure. Although the structure
size is checked against the sub-tree size, no checking can be done if the type and order of
the values in the structure are the same than those in the ODB sub-tree. Therefore it is

recommended to use the function db_create_record() before using this function.

Example: ...
memset (&lazyst,0,size);

if (db_find_key(hDB, pLch->hKey, "Statistics",&hKeyst) == DB_SUCCESS)
status = db_set_record(hDB, hKeyst, &lazyst, size, 0);

else

cm_msg (MERROR, "task","record %s/statistics not found", pLch->name)

Return Value: DB_SUCCESS, DB_INVALID HANDLE,

DB_TYPE_MISMATCH,
DB_STRUCT_SIZE_MISMATCH

Parameters: hDB ODB handle obtained via

cm_get_experiment_database().

hKey Handle for key where search starts, zero for root.

data Pointer where data is stored.

buf _size Size of data structure, must be obtained via
sizeof(RECORD-NAME).

align Byte alignment calculated by the stub andpassed
to the rpc side to align data according to local
machine. Must be zerowhen called from user
level.

12.8.54

INT db_create_record() (HNDLE hDB, HNDLE hKey, char* key_name,

char* init_str)

Description: Create a record. If a part of the record exists alreay, merge it with the init_str (use

Creates an ODB sub-tree from an ASCII representation.

values from the init_str only when they are not in the existing record).

Remarks: This functions creates a ODB sub-tree according to an ASCII representation of that
tree. See db_copy() for a description. It can be used to create a sub-tree which exactly
matches a C structure. The sub-tree can then later mapped to the C structure (”hot-link”)
via the function db_open _record().

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002

12

appendix E: Midas libraries

If a sub-tree exists already which exactly matches the ASCII representation, it is not mod-
ified. If part of the tree exists, it is merged with the ASCII representation where the ODB
values have priority, only values not present in the ODB are created with the default val-
ues of the ASCII representation. It is therefore recommended that before creating an ODB
hot-link the function db_create_record() is called to insure that the ODB tree and the C

structure contain exactly the same values in the same order.

Following example creates a record under /Equipment/Trigger/Settings, opens a hot-link
between that record and a local C structure trigger settings and registers a callback function

trigger update() which gets called each time the record is changed.

Example: struct {
INT levell;
INT level2;

} trigger_settings;

char *trigger_settings_str =

"[Settings]\n\

levell = INT : O\n\

level2 = INT : O";

void trigger_update(INT hDB, INT hkey, void *info)

{

printf ("New levels: %d %d\n",
trigger_settings.levell,

trigger_settings.level2);

}

main()

{
HNDLE hDB, hkey;
char[128] info;

cm_get_experiment_database(&hDB, NULL) ;
db_create_record(hDB, 0, "/Equipment/Trigger", trigger_settings_str);
db_find_key(hDB, 0,"/Equipment/Trigger/Settings", &hkey);
db_open_record (hDB, hkey, &trigger_settings,

sizeof (trigger_settings), MODE_READ, trigger_update, info);

Return Value:

Parameters:

DB_SUCCESS, DB_INVALID_HANDLE, DB_FULL,

hDB

hKey
key_name
init_str

DB_NO_ACCESS, DB_.OPEN_RECORD
ODB handle obtained via
cm_get_experiment_database().

Handle for key where search starts, zero for root.
Name of key to search, can contain directories.
Initialization string in the format of the
db_copy/db_save functions.

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 233

12 appendix E: Midas libraries

12.8.55

INT db_open_record() (HNDLE hDB, HNDLE hKey, void* ptr,

INT recsize, WORD access_mode, void (*dis-
patcher) (INT, INT, void*), void* info)

Creates a hot-link between an ODB sub-tree and a C structure.

Description: Open a record. Create a local copy and maintain an automatic update.

Remarks: This function opens a hot-link between an ODB sub-tree and a local structure. The
sub-tree is copied to the structure automatically every time it is modified by someone else.
Additionally, a callback function can be declared which is called after the structure has
been updated. The callback function receives the database handle and the key handle as
parameters.

Problems might occur if the ODB sub-tree contains values which don’t match the C structure.
Although the structure size is checked against the sub-tree size, no checking can be done if
the type and order of the values in the structure are the same than those in the ODB sub-tree.
Therefore it is recommended to use the function db_create record() before db_open_record ()
is used which ensures that both are equivalent.

The access mode might either be MODE_READ or MODE_WRITE. In read mode, the ODB
sub-tree is automatically copied to the local structure when modified by other clients. In
write mode, the local structure is copied to the ODB sub-tree if it has been modified locally.
This update has to be manually scheduled by calling db_send_changed_records() periodically
in the main loop. The system keeps a copy of the local structure to determine if its contents
has been changed.

If MODE_ALLOC is or’ed with the access mode, the memory for the structure is allocated
internally. The structure pointer must contain a pointer to a pointer to the structure. The
internal memory is released when db_close_record() is called.

Example: To open a record in write mode.

struct {

INT levell;

INT level2;
} trigger_settings;
char *trigger_settings_str =
"[Settings]\n\
levell = INT : O\n\
level2 = INT : 0";
main()
{

HNDLE hDB, hkey, i=0;

cm_get_experiment_database(&hDB, NULL) ;

db_create_record(hDB, 0, "/Equipment/Trigger", trigger_settings_str);
db_find_key(hDB, 0,"/Equipment/Trigger/Settings", &hkey) ;
db_open_record (hDB, hkey, &trigger_settings, sizeof(trigger_settings)

This page was generated with the help of DOC++

February 1, 2002 234

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

, MODE_WRITE, NULL);

trigger_settings.levell = i++;
db_send_changed_records ()
status = cm_yield(1000);

} while (status != RPC_SHUTDOWN && status !'= SS_ABORT);

Return Value: DB_SUCCESS, DB_INVALID HANDLE,
DB_NO_MEMORY, DB_NO_ACCESS,
DB_STRUCT_SIZE_MISMATCH
Parameters: hDB ODB handle obtained via
cm_get_experiment_database().
hKey Handle for key where search starts, zero for root.
ptr If access.mode includes MODE_ALLOC:Address
of pointer which points to therecord
data after the callif access.mode includes
not MODE_ALLOC:Address of recordif
ptr==NULL, only the dispatcher is called.
accessmode Mode for opening record, either MODE_READ
orMODE _ WRITE. May be or’ed with
MODE_ALLOC tolet db_open_record allocate
the memory forthe record.
dispatcher Function which gets called when record is up-
dated.Theargument list composed of: HNDLE
hDB, HNDLE hKey, void *info
info Additional info passed to the dispatcher.

12.8.56

INT db_close_record() (HNDLE hDB, HNDLE hKey)

Close open record.

Description: Close a record previously opend with db_open_record.

Remarks:

Example:

Return Value: DB_SUCCESS, DB_INVALID_HANDLE

Parameters: hDB ODB handle obtained via

cm_get_experiment_database().
hKey Handle for key where search starts, zero for root.

This page was generated with the help of DOC++

February 1, 2002 235

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

12.8.57

INT db_send_changed records() ()

update ODB from local open records.

Description: Send all records to the ODB which were changed locally since the last call to this

function.

Remarks: This function is valid if used in conjunction with db_open_record() under the condition

the record is open as MODE_WRITE access code.

Example: Full example dbchange.c which can be compiled as follow
gee -DOS_LINUX -I/midas/include -o dbchange dbchange.c /midas/linuz/lib/libmidas.a -

lutil

//-———=—= dbchange.c
#include "midas.h"
#include "msystem.h"

typedef struct {
INT my_number;
float my_rate;
} MY_STATISTICS;

MY_STATISTICS myrec;

#define MY_STATISTICS(_name) char *_name[] = {\

"My Number = INT : O",\
"My Rate = FLOAT : 0",\
ll",\

NULL }

HNDLE hDB, hKey;

// Main
int main(unsigned int argc,char **argv)
{
char host_name [HOST_NAME_LENGTH] ;
char expt_name [HOST_NAME_LENGTH] ;
INT lastnumber, status, msg;
BOOL debug=FALSE;
char i, ch;
DWORD update_time, mainlast_time;

MY_STATISTICS (my_stat);

// set default
host_name[0] = 0;
expt_name[0] 0;

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 236

12 appendix E: Midas libraries

// get default
cm_get_environment (host_name, expt_name);

// get parameters
for (i=1 ; i<argc ; i++)
{
if (argv[i][0] == ’-’ && argv[i][1] == ’4d’)
debug = TRUE;
else if (argv[i][0] == ’-?)
{
if (i+1 >= argc || argv[i+1][0] == ’-?)
goto usage;
if (strncmp(argv[i],"-e",2) == 0)
strcpy (expt_name, argv[++i]);
else if (strncmp(argv[i],"-h",2)==0)
strcpy (host_name, argv[++il);
}
else
{
usage:
printf ("usage: dbchange [-h <Hostname>] [-e <Experiment>]\n");
return 0;
}
}

// connect to experiment
status = cm_connect_experiment (host_name, expt_name, "dbchange", 0);
if (status != CM_SUCCESS)

return 1;

// Connect to DB
cm_get_experiment_database(&hDB, &hKey);

// Create a default structure in 0ODB
db_create_record(hDB, 0, "My statistics", strcomb(my_stat));

// Retrieve key for that strucutre in 0ODB
if (db_find_key(hDB, O, "My statistics", &hKey) != DB_SUCCESS)
{
cm_msg(MERROR, "mychange", "cannot find My statistics");
goto error;

}

// Hot link this structure in Write mode

status = db_open_record(hDB, hKey, &myrec

, sizeof (MY_STATISTICS), MODE_WRITE, NULL, NULL);

if (status != DB_SUCCESS)

{
cm_msg(MERROR, "mychange", "cannot open My statistics record");
goto error;

¥

// initialize ss_getchar ()
ss_getchar (0);

This page was generated with the help of DOC++

February 1, 2002 237

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

// Main loop
do
{
// Update local structure
if ((ss_millitime() - update_time) > 100)
{
myrec.my_number += 1;
if (myrec.my_number - lastnumber) {
myrec.my_rate = 1000.f * (float) (myrec.my_number - lastnumber)
/ (float) (ss_millitime() - update_time);
}
update_time = ss_millitime();
lastnumber = myrec.my_number;

}

// Publish local structure to ODB (db_send_changed_record)
if ((ss_millitime() - mainlast_time) > 5000)

{
db_send_changed_records () ; // <—————— Call
mainlast_time = ss_millitime();
}
// Check for keyboard interaction
ch = 0;
while (ss_kbhit())
{
ch = ss_getchar(0);
if (ch == -1)
ch = getchar();
if ((char) ch == ’!7)
break;
}
msg = cm_yield(20);
} while (msg !'= RPC_SHUTDOWN && msg != SS_ABORT && ch != ’!’);
error:
cm_disconnect_experiment () ;
return 1;
}
//====———- EOF dbchange.c
Return Value: DB_SUCCESS
12.9

MIDAS Macros

Message Macros, Acquisition. Exportable MACROs through midas.h, msystem.h or ybos.h.

This page was generated with the help of DOC++

February 1, 2002 238

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

Names
12.9.1 DAQ Macros LAM and Event header manipulation .. 239
12.9.2 Message Macros Message macros for em_msg() 241

Several group of MACRQOs are available for simplifying user job on setting or getting Midas
information. They are also listed in the Midas Library. All of them are defined in the midas.h,
ybos.h header files.

Message Macros To be used with cm_msg.

DAQ Event/LAM Macros To be used in the frontend/analyzer code.

12.9.1

DAQ Macros

LAM and Event header manipulation

CAMAC LAM manipulation These Macros are used in the frontend code to interact with the
LAM register. Usualy the CAMAC Crate Controler has the feature to register one bit per
slot and be able to present this register to the user. It may even have the option to mask

off this register to allow to set a ”general” LAM register containing either ”1” (At least one
LAM from the masked LAM is set) or ”0” (no LAM set from the maksed LAM register).

The poll_event() uses this feature and return a variable which contains bit-wise the current
LAM register of the Crate Controller.

LAM_SOURCE

LAM_STATION

LAM_SOURCE_CRATE (— 12.8.1, page 197)
LAM_SOURCE_STATION (— 12.8.1, page 197)

BYTE swap manipulation These Macros can be used in the backend analyzer when [little-
endian/big-endian are mixed in the event.

e WORD_SWAP
e DWORD_SWAP
e QWORD_SWAP

MIDAS Event Header manipulation Every event travelling through the Midas system has a
”Event Header” containing the minimum information required to identify its content. The
size of the header has been kept as small as possible in order to minimize its impact on the
data rate as well as on the data storage requirment. The following macros permit to read
or override the content of the event header as long as the argument of the macro refers to
the top of the Midas event (pevent). This argument is available in the frontend code in any

This page was generated with the help of DOC++

February 1, 2002 239

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

of the user readout function (pevent). It is also available in the user analyzer code which
retrieve the event and provide directly access to the event header (pheader) and to the user
part of the event (pevent). Sub-function using pevent would then be able to get back the
the header through the use of the macros.

amples/experiment /adccalib.c INT adc_calib(EVENT_HEADER #*pheader, void *pevent)
{
INT i, n_adc;
WORD *pdata;
float *cadc;

// look for ADCO bank, return if not present
n_adc = bk_locate(pevent, "ADCO", &pdata);
if (n_adc == 0 || n_adc > N_ADC)

return 1;

// create calibrated ADC bank
bk_create(pevent, "CADC", TID_FLOAT, &cadc);

amples/experiment /frontend.c INT read_trigger_event(char *pevent, INT off)
{
WORD *pdata, a;
INT q, timeout;

// init bank structure
bk_init(pevent) ;

nent from running experiment INT read_ge_event(char *pevent, INT offset)
{
static WORD *pdata;
INT i, x, q;
WORD temp;

// Change the time stamp in millisecond for the Super event
TIME_STAMP (pevent) = ss_millitime();

bk_init(pevent) ;
bk_create(pevent, "GERM", TID_WORD, &pdata);

nent from running experiment ..
lam = *((DWORD *)pevent);

if (lam & LAM_STATION(JW_N))
{

// compose event header
TRIGGER_MASK (pevent) = JW_MASK;
EVENT_ID (pevent) = JW_ID;
SERTAL_NUMBER (pevent)= eq->serial_number++;
// read MCS event
size = read_mcs_event(pevent);
// Correct serial in case event is empty
if (size == 0)
SERIAL_NUMBER (pevent) = eq->serial_number--;

This page was generated with the help of DOC++

February 1, 2002 240

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

TRIGGER_-MASK
EVENT_ID
SERIAL_NUMBER
TIME_STAMP

12.9.2

Message Macros

Message macros for cm_msg()

These Macros compact the 3 first arguments of the cm_msg() call. It replaces the type of message,
the routine name and the line number in the C-code. See example in cm_msg().

MERROR For error (MT_ERROR, __FILE__, _LINE_)
MINFO For info (MT_INFO, _FILE_, _LINE_)
MDEBUG For debug (MT_DEBUG, _ FILE_, _LINE_)
MUSER Produced by interactive user (MT_USER, _FILE_, _LINE_))
MLOG Info message which is only logged (MT_LOG, _FILE_, _LINE_))
MTALK Info message for speech system (MT_TALK, _FILE_, LINE_)
MCALL Info message for telephone call (MT_CALL, _FILE_, _LINE_)

The Message codes are:

#define MT_ERROR (1<<0)
#define MT_INFO (1<<1)
#define MT_DEBUG (1<<2)
#define MT_USER (1<<3)
#define MT_LOG (1<<4)
#define MT_TALK (1<<5b)
#define MT_CALL (1<<6)
#define MT_ALL OxFF

This page was generated with the help of DOC++

February 1, 2002 241

http:/ /www. linuxsupportline.com/~doc-+-+

12

appendix E: Midas libraries

12.10

YBOS library

Names
12.10.1

12.10.2

12.10.3

12.10.4

12.10.5

12.10.6

12.10.7

12.10.8

12.10.9

#define

INT

void

void

INT

INT

INT

INT

INT

12.10.10 INT

12.10.11

INT

12.10.1

exportable ybos functions through inclusion of ybos.h

EVID bank EVID bank description with available
MACTO'S. oo ee ettt 242

bk_list() (BANK_HEADER* pmbh, char* bklist)
fill a string will all the bank names in the

CUETIE. et e 244
ybk_init (DWORD* plrl)
Initialize an event. 244

ybk_create (DWORD* plrl, char* bkname, DWORD bktype,
void* pbkdat)

Create a YBOS bank. 245
ybk_close (DWORD* plrl, void* pbkdat)

Close YBOS bank. 245
ybk_size (DWORD* plrl)

compute event size in bytes. 246

ybk_list (DWORD* plrl, char* bklist)
Ezxtract the bank list of an event composed
of YBOS banks. 246

ybk_find (DWORD* plrl, char* bkname, DWORD* bklen,
DWORD* bktype, void** pbk)

Find bank in event. 246
ybk_locate (DWORD* plrl, char* bkname, void* pdata)
Locate bank in event. 247

ybk_iterate (DWORD* plrl,
YBOS_-BANK_HEADER** pybkh, void** pdata)
Find bank in event. 247

yb_any _file rclose (INT datafmt)ccoociivniien.... 248

#define EVID bank

EVID bank description with available macro’s.

As soon as the Midas header is striped out from the event, the YBOS remaining data has lost the
event synchonization unless included by the user. It is therefore necessary to have a YBOS bank

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 242

12 appendix E: Midas libraries

duplicating this information usually done in the FE by creating a "EVID” bank filled with the
Midas info and other user information.

Unfortunately the format of this EVID is flexible and I couldn’t force user to use a default
structure. For this reason, I’'m introducing a preprocessor flag for selecting such format.

Omitting the declaration of the pre-processor flag the EVID_TRINAT is taken by default see
appendix F: Midas build options and consideration.

Special macros are avaialbe to retrieve this information based on the EVID content and the
type of EVID structure.

OS_EVID _EVENT ID(e) Extract the Event ID.
ID_TRIGGER_MASK(e) Extract the Trigger mask.

1e YBOS_EVID_TIME(e) Extract the time stamp.

(e)

(e)

YBOS_EVID_SERIAL(e) Extract the Serial number.

(e)

SVID_RUN_NUMBER(e) Extract the run number.
()

DS_EVID_EVENT_NB(e) Extract the event counter.

The Macro parameter should point to the first data of the EVID bank.

// check if EVID is present if so display its content
if ((status = ybk_find (pybos, "EVID", &bklen, &bktyp, (void *)&pybk)) == YB_SUCCESS)
{

pdata = (DWORD *) ((YBOS_BANK_HEADER *)pybk + 1);

pevent->event_id YBOS_EVID_EVENT_ID(pdata) ;

pevent->trigger_mask YBOS_EVID_TRIGGER_MASK(pdata) ;

pevent->serial_number = YBOS_EVID_SERIAL (pdata) ;

pevent->time_stamp YBOS_EVID_TIME(pdata) ;

pevent->data_size pybk->length;

The current type of EVID bank are:

EVID_TRINAT Specific for Trinat experiment.

ybk_create ((DWORD *)pevent, "EVID", I4_BKTYPE, (DWORD *) (&pbkdat));
*((WORD *)pbkdat) = EVENT_ID(pevent); ((WORD x)pbkdat)++;
*((WORD *)pbkdat) = TRIGGER_MASK(pevent); ((WORD *)pbkdat)-++;

* (pbkdat)++ = SERIAL_NUMBER(pevent) ;
* (pbkdat)++ = TIME_STAMP (pevent) ;
* (pbkdat)++ = gbl_run_number; // run number

EVID_CHAOS Specific to CHAQOS experiment.
need code here.

EVID_TWIST Specific to Twist Experiment (Triumf).

This page was generated with the help of DOC++

February 1, 2002 243

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

ybk_create ((DWORD *)pevent, "EVID", I4_BKTYPE, &pbkdat);
*((WORD *)pbkdat) = EVENT_ID(pevent); ((WORD *)pbkdat)++;
*((WORD *)pbkdat) = TRIGGER_MASK(pevent); ((WORD *)pbkdat)-++;
* (pbkdat)++ = SERIAL_NUMBER(pevent);

* (pbkdat)++ = TIME_STAMP (pevent) ;

* (pbkdat)++ = gbl_run_number; // run number

* (pbkdat)++ = *((DWORD *)frontend_name) ; // frontend name
ybk_close ((DWORD *)pevent, pbkdat) ;

Parameters: e pointer to the first data of the bank.

12.10.2

INT bk_list() (BANK_HEADER* pmbh, char* bklist)

fill a string will oll the bank names in the event.

Description: extract the MIDAS bank name listing of an event.

Remarks: The bklist should be dimensioned with YB_.STRING_BANKLIST_MAX which corre-
spond to a max of YB_.BANKLIST MAX (midas.h:32) banks.

Return Value: number of bank found in this event.
Parameters: pmbh pointer to the bank header (pheader+1).
bklist returned ASCII string, has to be booked with
YB_STRING_BANKLIST MAX.

12.10.3

void ybk_init (DWORD* plrl)

Initialize an event.

ybk_init()

Description: Initializes an event for YBOS banks structure.

Remarks: Before banks can be created in an event, ybk_init() has to be called first. See YBOS
bank examples.

Return Value: void
Parameters: plrl pointer to the first DWORD of the event area of
event

This page was generated with the help of DOC++

February 1, 2002 244

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

12.10.4

void ybk_create (DWORD* plrl, char* bkname, DWORD bktype, void*
pbkdat)

Create a YBOS bank.

ybk_create()

Description: Define the following memory area to be a YBOS bank with the given attribute.
See YBOS bank examples.

Remarks: Before banks can be created in an event, ybk_init(). has to be called first. YBOS does
not support mixed bank type. i.e: all the data are expected to be of the same type. YBOS
is a 4 bytes bank aligned structure. Padding is performed at the closing of the bank (see
ybk_close) with values of 0x0f or/and 0x0ffb. See YBOS bank examples.

Return Value: void
Parameters: pevent pointer to the first DWORD of the event area.
bkname name to be assigned to the breated bank (max 4

char)

bktype YBOS Bank Types of the values for the entire
created bank.

pbkdat return pointer to the first empty data location.

12.10.5

INT ybk_close (DWORD* plrl, void* pbkdat)

Close YBOS bank.

ybk_close()

Description: Close the YBOS bank previously created by ybk_create.

Remarks: The data pointer pdata must be obtained by ybk_create() (— 12.10.4, page 245) and
used as an address to fill a bank. It is incremented with every value written to the bank
and finally points to a location just after the last byte of the bank. It is then passed to
ybk_close() to finish the bank creation. YBOS is a 4 bytes bank aligned structure. Padding
is performed at the closing of the bank with values of 0x0f or/and 0x0ffb. See YBOS bank

examples.
Return Value: number of bytes contained in bank.
Parameters: plrl pointer to current composed event.

pbkdata pointer to the current data.

This page was generated with the help of DOC++

February 1, 2002 245

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

12.10.6

INT ybk_size (DWORD* plrl)

compute event size in bytes.

ybk_size()

Description: Returns the size in bytes of the event composed of YBOS bank(s).

Remarks:
Return Value: number of bytes contained in data area of the event
Parameters: plrl pointer to the area of event

12.10.7

INT ybk_list (DWORD* plrl, char* bklist)

Extract the bank list of an event composed of YBOS banks.

ybk _list()

Description: Returns the size in bytes of the event composed of YBOS bank(s).
Remarks: The bklist has to be a predefined string of max size of YB_.STRING_BANKLIST_MAX.

Return Value: number of banks found in this event.
Parameters: plrl pointer to the area of event
bklist Filled character string of the YBOS bank names
found in the event.

12.10.8

INT ybk_find (DWORD* plrl, char* bkname, DWORD* bklen, DWORD*
bktype, void** pbk)

Find bank in event.

ybk_find()

Description: Find the requested bank and return the infirmation if the bank as well as the
pointer to the top of the data section.

This page was generated with the help of DOC++

February 1, 2002 246

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

Remarks:
Return Value: YB_SUCCESS, YB BANK_ NOT_FOUND,
YB_-WRONG_BANK_TYPE
Parameters: plrl pointer to the area of event.
bkname name of the bank to be located.
bklen returned length in 4bytes unit of the bank.
bktype returned bank type.
pbkdata pointer to the first data of the found bank.
12.10.9

INT ybk_locate (DWORD* plrl, char* bkname, void* pdata)

Locate bank in event.

ybk_locate()

Description: Locate the requested bank and return the pointer to the top of the data section.

Remarks:

Return Value: Number of DWORD in bank or
YB_BANK_NOT_FOUND,
YB_.WRONG_BANK_TYPE (<0)
Parameters: plrl pointer to the area of event
bkname name of the bank to be located.
pdata pointer to the first data of the located bank.

12.10.10

INT ybk_iterate (DWORD* plrl, YBOS_BANK HEADER** pybkh,
void** pdata)

Find bank in event.

ybk_iterate()

Description: Returns the bank header pointer and data pointer of the given bank name.

Remarks:

This page was generated with the help of DOC++

February 1, 2002 247

http:/ /www. linuxsupportline.com/~doc-+-+

12 appendix E: Midas libraries

Return Value: data length in 4 bytes unit. return -1 if no more bank
found.
Parameters: plrl pointer to the area of event.

bkname name of the bank to be located.

pybkh pointer to the YBOS bank header.
pdata pointer to the first data of the current bank.

12.10.11

INT yb_any file rclose (INT data_fmt)

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002

248

13 appendix F: Midas build options and consideration

13

appendix F: Midas build options and consideration

There are several pre-compiler flags which can be of some use.

OS selection ” OS xxxxx”

user flag ”USERFLAGS”

"MIDAS_PREF_FLAGS’

”SPECIFIC_OS_PRG”

rt ”INCLUDE_FTPLIB”
pport »INCLUDE_ZLIB”

1 ”YBOS_VERSION_3_3”

static built

"DM_DUAL_THREAD”

SE_EVENT_CHANNEL”
USE_INT

The current OS support is done through fix flag established in the general Makefile. Cur-
rently the OS supported are: OS_OSF1, OS_ULTRIX, OS_ FREEBSD, OS_LINUX ,
OS_SOLARIS. For OS_IRIX please contact Pierre. The OS_VMS is not included in the
Makefile as it requires a particular one and since several years now the VMS support has
been dropped.

OSFLAGS = -DOS_LINUX ...

In case you need more switch during compilation you can use the variable USERFLAGS
included in the OSFLAGS.

make USERFLAGS=-static linux/bin/mstat
This flag is for internal global Makefile preference. Included in the OSFLAGS.
MIDAS_PREF_FLAGS = -DYBOS_VERSION_3_3 -DEVID_TWIST

This flag is for internal Makefile preference. Used in particular for additional applications
build based on the OS selection. In the example below mlxspeaker and dio are built only
under OS_LINUX.

SPECIFIC_0S_PRG = $(BIN_DIR)/mlxspeaker $(BIN_DIR)/dio

Application such as the mlogger, lazylogger can use the ftp channel for data transfer.

The applications lazylogger, mdump can be built with zlib.a in order to gain direct
access to the data files with the extension mid.gz or ybs.gz (module ybos.c). Building the
application static prevent to rebuild the whole midas package. The analyzer mana has this
option already enabled.

make USERFLAGS=-DINCLUDE_ZLIB linux/lib/ybos.o
make USERFLAGS=-static linux/bin/mdump

The default built for ybos support is version 4.0. If lower version is required include
YBOS_VERSION _3_3 during compilation of the ybos.c

make USERFLAGS=-DYBOS_VERSION_3_3 linux/1lib/ybos.o

By default the midas applications are built against the dynamic library libmidas.so. In
case static application is required, use the flag -static during linking.

make USERFLAGS=-static linux/bin/mstat

Valid only under VxWorks. This flag enable the dual thread task when running the
frontend code under VxWorks. The main function calls are the dm_xxxx in midas.c (Refer
to Pierre for more information).

To be used in conjunction with the DM_DUAL_THREAD.

In mfe.c. Enable the use of interrupt mechanism (refer to Stefan or Pierre for further
information).

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002 249

14

appendix G: Frequently Asked Questions

14

appendix G: Frequently Asked Questions

Names

14.1

14.2
14.3

14.4
14.5

14.6
14.7

14.8

14.9

Why the CAMAC frontend generate a core dump (linux)?

Where does Midas log file resides?

How do I protected my experiment from being controlled

Can I compose my own experimental web page?

How do I prevent user to modify ODB values while the run

Is there a way to invoke my own scripts from the web? .

I’ve seen the ODB prompt displaying the run state, how

I’ve setup the alarm on one parameter in ODB but I can’t

How do I ...

Feel free to ask questions to one of us (Stefan, Pierre).

14.1

250
251

251
251

252
252

252

253
253

Why the CAMAC frontend generate a core dump (linux)?

If you’re not using a Linux driver for the CAMAC access, you need to start the CAMAC frontend
application through the task launcher first. See dio task or mcnaf task.

This page was generated with the help of DOC++

http:/ /www. linuxsupportline.com/~doc-+-+

February 1, 2002

250

by

aliases?

is
in
progre

do
you
do
that?

make
it
trig-
ger?

14 appendix G: Frequently Asked Questions

This task laucher will grant you access permission to the I0 port mapped to your CAMAC
interface.

14.2

Where does Midas log file resides?

As soon as any midas application is started, a file midas.log is produce. The location of this file
depends on the setup of the experiment.

e if exptab is present and contains the experiment name with the corresponding directory,
this is where the file midas.log will reside.

e if the midas logger mlogger task is running the midas.log will be in the directory pointed
by the ”"Data Dir” key under the /logger key in the ODB tree.

e Otherwise the file midas.log will be created in the current directory in which the Midas
application is started.

14.3

How do I protected my experiment from being controlled by
aliases?

e Every experiment may have a dedicated password for accessing the experiment from the web
browser. This is setup through the ODBedit program with the command webpass. This
will create a Security tree under /Experiment with a new key Web Password with the
encrypted word. By default Midas allows Full Read Access to all the Midas Web pages.
Only when modification of a Midas field the web password will be requested. The password
is stared as a cookie in the target web client for 24 hours See ODB /Experiment Tree.

e Other options of protection are described in ODB /Experiment Tree which gives to dedicated
hosts access to ODB or dedicated programs.

14.4

Can I compose my own experimental web page?

This page was generated with the help of DOC++

February 1, 2002 251

http:/ /www. linuxsupportline.com/~doc-+-+

14 appendix G: Frequently Asked Questions

e Only under 1.8.3 though. You can create your own html code using your favorite HMTL
editor. By including custom Midas Tags, you will have access to any field in the ODB of
your experiment as well as the standard button for start/stop and page switch. See Utilities
mhttpd task Custom page.

14.5

How do I prevent user to modify ODB values while the run is in
progress?

e By creating the particular /Experiment/Lock when running/ ODB tree, you can include
symbolic links to any odb field which needs to be set to Read Only field while the run state
is on. See ODB /Experiment Tree.

14.6

Is there a way to invoke my own scripts from the web?

o Yes, by creating the ODB tree /Script every entry in that tree will be available on the Web
status page with the name of the key. Each key entry is then composed with a list of ODB
field (or links) starting with the executable command followed by as many arguments as you
wish to be passed to the script. See ODB /Script Tree.

14.7

I’ve seen the ODB prompt displaying the run state, how do you
do that?

e Modify the /System/prompt field. The ”S” is the trick.

Fri> odb -e bnmrl -h isdaqO1
[host:expt:Stopped]/cd /System/
[host:expt:Stopped] /Systemls
Clients

Client Notify 0

This page was generated with the help of DOC++

February 1, 2002 252

http:/ /www. linuxsupportline.com/~doc-+-+

14 appendix G: Frequently Asked Questions

Prompt [4h:%e:%S1%p
Tmp

[host:expt:Stopped] /System
[host:expt:Stopped] /Systemset prompt [/h:%e:%S1%p>
[host:expt:Stopped] /System>ls

Clients

Client Notify 0

Prompt [4h:%e:%S1hp>
Tmp

[host:expt:Stopped] /System>set Prompt [%h:%e:%slip>
[host:expt:S]/System>set Prompt [%h:%e:%S]1%p>
[host:expt:Stopped] /System>

14.8

I’ve setup the alarm on one parameter in ODB but I can’t make
it trigger?

e The alarm scheme works only under ONLINE”. See ODB /RunInfo Tree for Online

Mode. This flag may have been turned off due to analysis replay using this ODB. Set this
key back to 1 to get the alarm to work again.

14.9

How do I ...

This page was generated with the help of DOC++

http://www.linuxsupportline.com/~doc-+-+ February 1, 2002 253

