"""Script to combine compton measurements with runs and process these data """ import argparse from configparser import ConfigParser from datetime import datetime, timedelta, timezone import logging import os import sys import sqlite3 from typing import Union, Tuple, Optional from compton_filter import CalibrdbHandler from iminuit import Minuit import matplotlib.dates as mdates import matplotlib.pyplot as plt from mysql.connector import connect, Error import numpy as np import pandas as pd from tqdm import tqdm SEASONS = { 'name': ['PHIOMEGA2012', 'RHO2013', 'BRK2013/16', 'HIGH2017', 'RHO2018', 'HIGH2019', 'LOW2020', 'HIGH2020', 'HIGH2021', 'NNBAR2022', 'HIGH2023'], 'start_run': [17405, 18809, 32076, 36872, 48938, 70014, 85224, 89973, 98116, 107342, 131913, None], } MANUAL_RUNS_SPLIT = [0, 150159, np.inf] # list[runs] to manually split point with the same energy class RunsDBHandler(): def __init__(self, host: str = 'cmddb', database: str = 'online', user: str = None, password: str = None): self.conn = connect(host = host, database = database, user = user, password = password) self.cur = self.conn.cursor() self.cur.execute("SET time_zone = '+07:00';") @property def fields(self) -> list: """Returns a list of available columns in the RunsDB """ self.cur.execute("""DESCRIBE Runlog""") return self.cur.fetchall() def load_tables(self, range: Union[Tuple[int, Optional[int]], Tuple[datetime, datetime]], energy_point: Optional[float] = None, select_bad_runs: bool = False): """ Returns a slice of the table with following fields: run, starttime, stoptime, energy, luminosity Parameters ---------- range : Union[Tuple[int, Optional[int]], Tuple[datetime, datetime]] selection range int range defines an interval in runs (first included, last excluded) datetime range defines a time interval (NSK: +7:00 time) energy_point : Optional[float] energy point name, MeV (default is None) select_bad_runs : bool select runs with labels except (Y) (default is False) """ cond = "" if isinstance(range[0], int): cond = f" AND run >= {range[0]} " if range[1] is not None: cond += f" AND run < {range[1]} " elif isinstance(range[0], datetime): cond = f" AND starttime >= %s " if range[1] is not None: cond += " AND stoptime <= %s" else: range = (range[0], ) energy_cond = "" if energy_point is not None: energy_cond = f" AND energy = {energy_point}" quality_cond = ' quality = "Y" ' if select_bad_runs: quality_cond = ' quality <> "Y" ' sql_query = f""" SELECT run, starttime, stoptime, energy, luminosity FROM Runlog WHERE {quality_cond} {cond} {energy_cond} AND luminosity > 0 AND stoptime > starttime AND nevent > 0 ORDER BY run DESC""" if isinstance(range[0], datetime): self.cur.execute(sql_query, range) else: self.cur.execute(sql_query) field_names = [i[0] for i in self.cur.description] res = self.cur.fetchall() return res, field_names def __del__(self): self.conn.close() class Combiner(): """Combines a dataframe with runs and a dataframe with compton measurements together """ def __init__(self, runsdb: Tuple[list, list], clbrdb: Tuple[list, list]): """ Parameters ---------- runsdb : Tuple[list, list] table of runs (rows and field names) clbrdb : Tuple[list, list] table of compton measurements (rows and field names) """ rdb_rows, r_fld = runsdb cdb_rows, c_fld = clbrdb self.conn = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES|sqlite3.PARSE_COLNAMES) self.cur = self.conn.cursor() self.cur.execute(f"CREATE table runs (run, elabel, starttime timestamp, stoptime timestamp, luminosity)") self.cur.execute(f"CREATE table compton (begintime timestamp, endtime timestamp, e_mean, e_std, spread_mean, spread_std)") run_row_generator = map(lambda x: (x[r_fld.index("run")], x[r_fld.index("energy")], x[r_fld.index("starttime")], x[r_fld.index("stoptime")], x[r_fld.index("luminosity")]), rdb_rows) c_data_idx = c_fld.index("data") compton_row_generator = map(lambda x: (x[c_fld.index("begintime")], x[c_fld.index("endtime")], float(x[c_data_idx][0]), float(x[c_data_idx][1]), float(x[c_data_idx][2]), float(x[c_data_idx][3])), cdb_rows) self.cur.executemany(f"""INSERT into runs VALUES ({','.join(['?']*5)})""", run_row_generator) self.cur.executemany(f"""INSERT into compton VALUES ({','.join(['?']*6)})""", compton_row_generator) self.__create_combined_table() def __create_combined_table(self): create_combined_query = """ CREATE TABLE combined_table AS SELECT runs.run AS run, runs.elabel AS elabel, runs.starttime as "run_start [timestamp]", runs.stoptime AS "run_stop [timestamp]", compton.begintime AS "compton_start [timestamp]", compton.endtime AS "compton_stop [timestamp]", runs.luminosity, compton.e_mean, compton.e_std, compton.spread_mean, compton.spread_std FROM runs, compton WHERE (runs.starttime BETWEEN compton.begintime AND compton.endtime) OR (runs.stoptime BETWEEN compton.begintime AND compton.endtime) OR (compton.begintime BETWEEN runs.starttime AND runs.stoptime) OR (compton.endtime BETWEEN runs.starttime AND runs.stoptime); """ self.cur.execute(create_combined_query) return def combined_table(self) -> pd.DataFrame: """Returns combined dataframe """ sql_query = """ SELECT * FROM combined_table; """ df = pd.read_sql(sql_query, self.conn) df['common_duration'] = df[['run_stop', 'compton_stop']].min(axis=1) - df[['run_start', 'compton_start']].max(axis=1) df['run_duration'] = df['run_stop'] - df['run_start'] df['run_in_measurement'] = df['common_duration']/df['run_duration'] df = df.sort_values(by='run_in_measurement', ascending=False).drop_duplicates(subset='run').sort_values(by='run') df = df.drop(['run_duration', 'common_duration'], axis=1) #, 'run_start', 'run_stop' return df def __del__(self): self.conn.close() class Likelihood(): """ Likelihood function """ def __init__(self, means: np.array, sigmas: np.array, weights: np.array): """ Parameters ---------- means : np.array array of means, [MeV] sigmas : np.array array of standard deviations, [MeV] weights : np.array array of luminosities """ self.means = means self.sigmas = sigmas self.weights = weights/weights.mean() # w_norm = (weights**2).sum()/(weights.sum()) # self.weights = weights/w_norm def __call__(self, mean: float, sigma: float): """ Calls likelihood calculation Parameters ---------- mean : float expected mean sigma : float expected standard deviation """ sigma_total = np.sqrt(sigma**2 + self.sigmas**2) ln_L = -np.sum( self.weights*( ((mean - self.means)**2)/(2*(sigma_total**2)) + np.log(sigma_total) ) ) return -ln_L def __estimate_point_with_closest(comb_df: pd.DataFrame, runs_df: pd.DataFrame, compton_df: pd.DataFrame): # estimate energy by the nearest points min_run_time = runs_df[runs_df.run == comb_df.iloc[0].at['run_first']].iloc[0].at['starttime'] max_run_time = runs_df[runs_df.run == comb_df.iloc[0].at['run_last']].iloc[0].at['stoptime'] nearest_row_before = compton_df.iloc[pd.Index(compton_df.endtime).get_loc(min_run_time, 'nearest')] nearest_row_after = compton_df.iloc[pd.Index(compton_df.begintime).get_loc(max_run_time, 'nearest')] # regulatization nearest_row_before['data'][1] = max(nearest_row_before['data'][3], 1e-3) nearest_row_after['data'][3] = max(nearest_row_after['data'][3], 1e-3) nearest_row_before['data'][1] = max(nearest_row_before['data'][1], 1e-3) nearest_row_after['data'][3] = max(nearest_row_after['data'][3], 1e-3) mean_energy = (nearest_row_before['data'][0] + nearest_row_after['data'][0])/2 mean_spread = (nearest_row_before['data'][2] + nearest_row_after['data'][2])/2 std_energy = np.sqrt(1/(1/(nearest_row_before['data'][1])**2 + 1/(nearest_row_after['data'][1])**2)) std_spread = np.sqrt(1/(1/(nearest_row_before['data'][3])**2 + 1/(nearest_row_after['data'][3])**2)) sys_energy = np.std([nearest_row_before['data'][0], nearest_row_after['data'][0]]) return { 'energy_point': comb_df.elabel.min(), 'first_run': comb_df.run_first.min(), 'last_run': comb_df.run_last.max(), 'mean_energy': mean_energy, 'mean_energy_stat_err': std_energy, 'mean_energy_sys_err': sys_energy, 'mean_spread': mean_spread, 'mean_spread_stat_err': std_spread, 'used_lum': 0, 'comment': 'indirect measurement #2', }, pd.DataFrame([]) def averager_on_lums(df: pd.DataFrame) -> dict: """Averaging as = \frac{\sum{L_i E_i}{\sum{L_i}}, \deltaE^2 = \frac{\sum{(L_i \delta E_i)^2}}{(\sum L_i)^2} Attention: I think it's incorrect way of avaraging. Parameters ---------- df : pd.DataFrame input dataframe containg means and spreads Returns ------- dict averaged mean and spread """ mean_en = (df.e_mean * df.luminosity).sum() / df.luminosity.sum() sys_err = df.e_mean.std() stat_err = np.sqrt( np.sum((df.luminosity * df.e_std)**2) ) / df.luminosity.sum() mean_spread = (df.spread_mean * df.luminosity).sum() / df.luminosity.sum() std_spread = np.sqrt( np.sum((df.luminosity * df.spread_std)**2) ) / df.luminosity.sum() return { 'mean_energy': mean_en, 'mean_energy_stat_err': stat_err, 'mean_energy_sys_err': sys_err, 'mean_spread': mean_spread, 'mean_spread_stat_err': std_spread, } def ultimate_averager(df: pd.DataFrame) -> dict: """Complete averager for estimation of mean energy and energy spread Parameters ---------- df : pd.DataFrame input dataframe containing means and spreads Returns ------- dict averaged mean and spread """ m = Minuit(Likelihood(df.e_mean, df.e_std, df.luminosity), mean=df.e_mean.mean(), sigma=df.e_mean.std(ddof=0)) m.errordef = 0.5 m.limits['sigma'] = (0, None) m.migrad(); # print(m.migrad()) sys_err = m.values['sigma'] mean_en = m.values['mean'] mean_spread = np.sum(df.spread_mean*df.luminosity/(df.spread_std**2))/np.sum(df.luminosity/(df.spread_std**2)) std_spread = np.sqrt(1/np.sum((df.luminosity/df.luminosity.mean())/df.spread_std**2)) return { 'mean_energy': mean_en, 'mean_energy_stat_err': m.errors['mean'], 'mean_energy_sys_err': sys_err, 'mean_spread': mean_spread, 'mean_spread_stat_err': std_spread, } def calculate_point(comb_df: pd.DataFrame, runs_df: pd.DataFrame, compton_df: pd.DataFrame, rdb, averager: callable = ultimate_averager) -> dict: """Calculates parameters of the energy (mean, std, spread) in this dataFrame Parameters ---------- comb_df : pd.DataFrame table of the measurements linked with runs runs_df : pd.DataFrame table of the runs compton_df : pd.DataFrame table of the comptons averager : callable function for averaging (ultimate_averager or averager_on_lums) Returns ------- dict, pd.DataFrame average parameters on this DataFrame, clean dataFrame """ if (len(comb_df) == 1) and pd.isnull(comb_df.iloc[0].at['compton_start']): # no direct measurements of the compton during data runs min_Yruntime = runs_df[runs_df.run == comb_df.iloc[0].at['run_first']].iloc[0].at['starttime'] max_Yruntime = runs_df[runs_df.run == comb_df.iloc[0].at['run_last']].iloc[0].at['stoptime'] dlt0 = timedelta(days=1) # assymetric time because energy can be stable only after runs_df_with_bads = rdb.load_tables((min_Yruntime, max_Yruntime + dlt0), energy_point = comb_df.iloc[0].at['elabel'], select_bad_runs = True) if len(runs_df_with_bads[0]) == 0: return __estimate_point_with_closest(comb_df, runs_df, compton_df) runs_df_with_bads_df = pd.DataFrame(runs_df_with_bads[0], columns = runs_df_with_bads[1]) min_run_time, max_run_time = min(min_Yruntime, runs_df_with_bads_df.starttime.min()), max(max_Yruntime, runs_df_with_bads_df.stoptime.max()) compton_meas = compton_df.query('((begintime>=@min_run_time)&(begintime<=@max_run_time))|((endtime>=@min_run_time)&(endtime<=@max_run_time))').copy() if len(compton_meas) == 0: # no compton measurements raise Exception("No measurement in this point. Pass it.") res_df = pd.DataFrame(list(map(lambda x: { 'compton_start': x[1]['begintime'], 'compton_stop': x[1]['endtime'], 'e_mean': float(x[1]['data'][0]), 'e_std': float(x[1]['data'][1]), 'spread_mean': float(x[1]['data'][2]), 'spread_std': float(x[1]['data'][3]), }, compton_meas.iterrows()))) res_df = res_df.query(f'abs(e_mean -{comb_df.iloc[0].at["elabel"]})<5') if len(res_df) == 0: return __estimate_point_with_closest(comb_df, runs_df, compton_df) return { 'energy_point': comb_df.elabel.min(), 'first_run': comb_df.run_first.min(), 'last_run': comb_df.run_last.max(), 'mean_energy': res_df.e_mean.mean(), 'mean_energy_stat_err': np.sqrt(1/np.sum(1/(res_df.e_std)**2)), 'mean_energy_sys_err': np.abs(comb_df.iloc[0].at['elabel'] - res_df.e_mean.mean()), 'mean_spread': res_df.spread_mean.mean(), 'mean_spread_stat_err':np.sqrt(1/np.sum(1/(res_df.spread_std)**2)), 'used_lum': 0, 'comment': 'indirect measurement #1', }, res_df comb_df = comb_df.reset_index() df = comb_df.loc[~comb_df.compton_start.isna()].copy() df.spread_std = np.where(df.spread_std < 1e-4, 1e-4, df.spread_std) df = df[df.e_std > 0] mean_energy = np.sum(df.e_mean*df.luminosity/(df.e_std**2))/np.sum(df.luminosity/(df.e_std**2)) good_criterion = np.abs((df.e_mean - mean_energy)/np.sqrt(df.e_mean.std(ddof=0)**2 + df.e_std**2)) < 5 # print('WTF:', df[~good_criterion].index) df = df[good_criterion] df['accepted'] = 1 averages = averager(df) res_dict = { 'energy_point': comb_df.elabel.min(), 'first_run': comb_df.run_first.min(), 'last_run': comb_df.run_last.max(), 'mean_energy': averages['mean_energy'], 'mean_energy_stat_err': averages['mean_energy_stat_err'], 'mean_energy_sys_err': averages['mean_energy_sys_err'], 'mean_spread': averages['mean_spread'], 'mean_spread_stat_err': averages['mean_spread_stat_err'], 'used_lum': df.luminosity.sum()/comb_df.luminosity_total.sum(), 'comment': '', } comb_df['accepted'] = 0 comb_df.loc[df.index, 'accepted'] = 1 return res_dict, comb_df.set_index('point_idx') def process_intersected_compton_meas(combined_df: pd.DataFrame) -> pd.DataFrame: """Replaces compton measurements writed on the border of two energy points on NaNs """ energy_point_borders = combined_df[['point_idx', 'elabel', 'run_start', 'run_stop']].groupby(['point_idx'], dropna=True).agg( elabel_start_time=('run_start', 'min'), elabel_stop_time=('run_stop', 'max'), ) df_comb = combined_df.set_index('point_idx').join(energy_point_borders, how='left') df_comb['comptonmeas_in_elabel'] = (df_comb[['elabel_stop_time', 'compton_stop']].min(axis=1) - df_comb[['elabel_start_time', 'compton_start']].max(axis=1))/(df_comb['compton_stop'] - df_comb['compton_start']) df_comb = df_comb.query('comptonmeas_in_elabel < 0.7') border_comptons = df_comb.compton_start.values combined_df.loc[combined_df.compton_start.isin(border_comptons), ['compton_start', 'compton_stop', 'e_mean', 'e_std', 'spread_mean', 'spread_std', 'luminosity']] = np.nan return combined_df def process_combined(combined_df: pd.DataFrame, runs_df: pd.DataFrame, compton_df: pd.DataFrame, pics_folder: Optional[str] = None, rdb: Optional[RunsDBHandler] = None, old_averager: bool = False, energy_point_csv_folder: Optional[str] = None) -> pd.DataFrame: if pics_folder is not None: plt.ioff() plt.style.use('ggplot') locator = mdates.AutoDateLocator(minticks=5) formatter = mdates.ConciseDateFormatter(locator) formatter.formats = ['%y', '%b', '%d', '%H:%M', '%H:%M', '%S.%f', ] formatter.zero_formats = [''] + formatter.formats[:-1] formatter.zero_formats[3] = '%d-%b' formatter.offset_formats = ['', '%Y', '%b %Y', '%d %b %Y', '%d %b %Y', '%d %b %Y %H:%M', ] runs_df = runs_df.rename({'luminosity': 'luminosity_full', 'energy': 'elabel'}, axis=1) combined_df = pd.merge(combined_df.drop(['elabel'], axis=1), runs_df[['run', 'elabel', 'luminosity_full']], how='outer') combined_df = combined_df.sort_values(by='run') run_bin_split = np.digitize(combined_df.run, MANUAL_RUNS_SPLIT) is_same_elabel = np.isclose(combined_df.elabel, combined_df.elabel.shift(1), atol=1e-4) is_same_manualbin = np.isclose(run_bin_split, np.roll(run_bin_split, 1)) combined_df['point_idx'] = np.cumsum(~(is_same_elabel & is_same_manualbin)) # combined_df['point_idx'] = np.cumsum(~np.isclose(combined_df.elabel, combined_df.elabel.shift(1), atol=1e-4)) combined_df = process_intersected_compton_meas(combined_df) combined_df['luminosity'] = combined_df['luminosity'].fillna(0) # combined_df.to_csv('file.csv') combined_df = combined_df.groupby(['point_idx', 'compton_start'], dropna=False).agg( elabel=('elabel', 'min'), elabel_test=('elabel', 'max'), run_first=('run', 'min'), run_last=('run', 'max'), luminosity=('luminosity', 'sum'), luminosity_total=('luminosity_full', 'sum'), compton_stop=('compton_stop', 'min'), compton_stop_test=('compton_stop', 'max'), e_mean=('e_mean', 'min'), e_mean_test=('e_mean', 'max'), e_std=('e_std', 'min'), e_std_test=('e_std', 'max'), spread_mean=('spread_mean', 'min'), spread_mean_test=('spread_mean', 'max'), spread_std=('spread_std', 'min'), spread_std_test=('spread_std', 'max'), ).reset_index().set_index('point_idx') # return combined_df result_df = pd.DataFrame(columns=['energy_point', 'first_run', 'last_run', 'mean_energy', 'mean_energy_stat_err', 'mean_energy_sys_err', 'mean_spread', 'mean_spread_stat_err', 'used_lum', 'comment']) for i, table in tqdm(combined_df.groupby('point_idx', dropna=False)): try: res_dict, good_df = calculate_point(table, runs_df, compton_df, rdb, averager_on_lums if old_averager else ultimate_averager) if energy_point_csv_folder is not None: save_columns = ['elabel', 'run_first', 'run_last', 'luminosity', 'compton_start', 'compton_stop', 'e_mean', 'e_std', 'spread_mean', 'spread_std', 'accepted'] save_csv(good_df[save_columns].dropna(), f'{energy_point_csv_folder}/{res_dict["energy_point"]}_{res_dict["first_run"]}.csv', update_current=False) good_df = good_df.query('accepted==1') except Exception: continue # result_df = result_df.append(res_dict, ignore_index=True) result_df = pd.concat([result_df, pd.Series(res_dict).to_frame().T], ignore_index=True) if pics_folder is not None: plt_table = good_df.dropna() if len(plt_table) == 0: continue total_error = np.sqrt(res_dict["mean_energy_stat_err"]**2 + res_dict["mean_energy_sys_err"]**2) half_timedelta = (plt_table.compton_stop - plt_table.compton_start)/2 time = plt_table.compton_start + half_timedelta dlt0, total_time = timedelta(days=1), plt_table.compton_stop.max() - plt_table.compton_stop.min() timelim = [plt_table.compton_start.min() - 0.05*total_time, plt_table.compton_stop.max() + 0.05*total_time] fig, ax = plt.subplots(1, 1, dpi=120, tight_layout=True) ax.errorbar(time, plt_table.e_mean, xerr=half_timedelta, yerr=plt_table.e_std, fmt='.') ax.axhline(res_dict['mean_energy'], color='black', zorder=3, label='Mean') ax.fill_between(timelim, [res_dict['mean_energy'] - total_error]*2, [res_dict['mean_energy'] + total_error]*2, color='green', zorder=1, alpha=0.4) ax.tick_params(axis='x', labelrotation=45) ax.xaxis.set_major_locator(locator) ax.xaxis.set_major_formatter(formatter) ax.set(title=f'{res_dict["energy_point"]}, E = {res_dict["mean_energy"]:.3f} ± {res_dict["mean_energy_stat_err"]:.3f} ± {res_dict["mean_energy_sys_err"]:.3f} MeV', xlabel='Time, NSK', ylabel='Energy, [MeV]', xlim=timelim) plt.savefig(f'{pics_folder}/{res_dict["first_run"]}_{res_dict["energy_point"]}.png', transparent=True) plt.close() types_dict = {ftype : float for ftype in ['energy_point', 'mean_energy', 'mean_energy_stat_err', 'mean_energy_sys_err', 'mean_spread', 'mean_spread_stat_err', 'used_lum']} types_dict.update({itype : int for itype in ['first_run', 'last_run']}) result_df = result_df.astype(types_dict) return result_df def final_table_to_clbrdb(df: pd.DataFrame, clbrdb: CalibrdbHandler, runs_df: pd.DataFrame, season: str): """Write good values from the averaged table into clbrdb """ good_values = (df.comment=='')|((df.comment!='')&((df.mean_energy.astype(float) - df.energy_point).abs()<5)) df_clbrdb = df.loc[good_values].drop(['comment', 'used_lum'], axis=1) df_clbrdb = pd.merge(df_clbrdb, runs_df[['run', 'starttime']], how='left', left_on='first_run', right_on='run').drop(['run'], axis=1) df_clbrdb = pd.merge(df_clbrdb, runs_df[['run', 'stoptime']], how='left', left_on='last_run', right_on='run').drop(['run'], axis=1) df_clbrdb = df_clbrdb.assign(writetime=lambda df: df['stoptime']) df_clbrdb = df_clbrdb[['writetime', 'starttime', 'stoptime', 'energy_point', 'first_run', 'last_run', 'mean_energy', 'mean_energy_stat_err', 'mean_energy_sys_err', 'mean_spread', 'mean_spread_stat_err']].values.tolist() clbrdb.insert(df_clbrdb, 'Misc', 'RunHeader', 'Compton_run_avg', 'Default', comment = season) clbrdb.commit() def save_csv(df: pd.DataFrame, filepath: str, update_current: bool = True): """Saves csv file. Updates current file in filepath if exists""" if (os.path.isfile(filepath) and update_current): df_current = pd.read_csv(filepath) # df_current = df_current.append(df, ignore_index=True) df_current = pd.concat([df, df_current], ignore_index=True) df_current = df_current.drop_duplicates(subset=['energy_point', 'first_run'], keep='last') df = df_current df.to_csv(filepath, index=False, float_format='%g') return # python scripts/compton_combiner.py -s NNBAR2021 -c database.ini --csv_dir . --clbrdb def main(): log_format = '[%(asctime)s] %(levelname)s: %(message)s' logging.basicConfig(stream=sys.stdout, format=log_format, level=logging.INFO) #"filename=compton_combiner.log" logging.info("compton_combiner is started") parser = argparse.ArgumentParser(description = 'Mean compton energy measurements from clbrdb') parser.add_argument('-s', '--season', help = 'Name of the season') parser.add_argument('-c', '--config', help = 'Config file containing information for access to databases') parser.add_argument('--csv_dir', help = 'Save csv file with data in the folder or not if skip it') parser.add_argument('--clbrdb', action = 'store_true', help = 'Update Compton_run_avg clbrdb or not') parser.add_argument('--pics_folder', help = 'Path to the directory for saving the pictures') parser.add_argument('--energy_point_csv_folder', help = 'Path to the directory for saving the result in detail for each energy point') parser.add_argument('--only_last', action = 'store_true', help = 'Compute values of the last (in Compton_run_avg clbrdb) and new points only') parser.add_argument('--old_averaging', action = 'store_true', help = 'Use old incomplete = \frac{\sum{L_i E_i}{\sum{L_i}} averaging') args = parser.parse_args() logging.info(f"""Arguments: season {args.season}, config {args.config}, csv_dir {args.csv_dir}, save_to_clbrdb {args.clbrdb}, pics_folder {args.pics_folder}, detailed_csv_folder {args.energy_point_csv_folder}, only_last {args.only_last}, old_average: {args.old_averaging}""") parser = ConfigParser() parser.read(args.config); rdb = RunsDBHandler(**parser['cmdruns']) clbrdb = CalibrdbHandler(**parser['clbrDB']) idx = SEASONS['name'].index(args.season) runs_range = (SEASONS['start_run'][idx], SEASONS['start_run'][idx+1]) if args.only_last: res_avg = clbrdb.load_table('Misc', 'RunHeader', 'Compton_run_avg', num_last_rows = 1) if len(res_avg[0]) != 0: begintime = res_avg[0][0][res_avg[1].index("begintime")] runs_range = (begintime, None) logging.info(f"only_last flag enabled. Time range for runs database is used: {runs_range}") res_rdb = rdb.load_tables(runs_range) runs_df = pd.DataFrame(res_rdb[0], columns=res_rdb[1]) if args.only_last: # Remain the studied season only (important for the first averaging in the season with turned on only last flag) start_season_run, stop_season_run = SEASONS['start_run'][idx], SEASONS['start_run'][idx+1] if SEASONS['start_run'][idx+1] else np.inf runs_df = runs_df.query(f'(run>=@start_season_run)&(run<@stop_season_run)') tdlt0 = timedelta(days=2) time_range = (runs_df.starttime.min() - tdlt0, runs_df.stoptime.max() + tdlt0) res_clbrdb = clbrdb.load_table('Misc', 'RunHeader', 'Compton_run', num_last_rows = None, timerange = time_range) cb = Combiner(res_rdb, res_clbrdb) comb_df = cb.combined_table() compton_df = pd.DataFrame(res_clbrdb[0], columns=res_clbrdb[1]) cdf = process_combined(comb_df, runs_df, compton_df, args.pics_folder, rdb, args.old_averaging, args.energy_point_csv_folder) if args.csv_dir is not None: csv_path = os.path.join(args.csv_dir, f'{args.season}.csv') save_csv(cdf, csv_path) # cdf.to_csv(f'{args.season}.csv', index=False, float_format='%g') if args.clbrdb: final_table_to_clbrdb(cdf, clbrdb, runs_df, args.season) return if __name__ == "__main__": main()