0
0

init.php 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367
  1. <!-- https://www.createwithdata.com/chartjs-and-csv/ -->
  2. <!-- https://towardsdatascience.com/4-ways-to-improve-your-plotly-graphs-517c75947f7e -->
  3. <?php
  4. $branch = 'dev';
  5. $availableSeasons = array("RHO2018", "NNBAR2021");
  6. $season = isset($_GET["season"])&&in_array($_GET["season"], $availableSeasons) ? $_GET["season"] : reset($availableSeasons);
  7. $url = "https://cmd.inp.nsk.su/~compton/gitlist/compton_tables/raw/".$branch."/tables/".$season."/";
  8. $url_total_info = "https://cmd.inp.nsk.su/~compton/gitlist/compton_tables/raw/".$branch."/tables/".$season.".csv";
  9. $text = file_get_contents($url);
  10. $arrays = explode("\n", $text);
  11. $cleanArrs = array_filter($arrays, function($value) {
  12. return end(explode('.', $value)) == "csv";
  13. });
  14. function isSelected($a, $b){
  15. if ($a==$b){
  16. return "selected";
  17. }
  18. return "";
  19. }
  20. $selected_csv = isset($_GET["csv_file"])&&in_array($_GET["csv_file"], $cleanArrs) ? $_GET["csv_file"] : reset($cleanArrs);
  21. ?>
  22. <html>
  23. <head>
  24. <script src="plotly-latest.min.js"></script>
  25. <!-- <script src="https://cdn.plot.ly/plotly-latest.min.js"></script> -->
  26. <meta name="viewport" content="width=device-width, initial-scale=1">
  27. <link rel="stylesheet" href="main.css">
  28. <title>Compton interactive plots</title>
  29. <!-- <script src="chart.js"></script> -->
  30. </head>
  31. <body>
  32. <div id="gd" style="height: max(80vh, 600px); padding-bottom: 20px;"></div>
  33. <form name="form" action="" method="get">
  34. <p style="text-align: center;">Select energy point:</p>
  35. <div style="margin: 0 auto; display: flex; justify-content: center;">
  36. <select name="season" class="select-css" style="margin: 0;" onchange="this.form.submit()">
  37. <? foreach($availableSeasons as $s){ ?>
  38. <option value="<?echo $s?>" <?echo isSelected($s, $season)?>><?echo $s?></option>
  39. <? } ?>
  40. </select>
  41. <select name="csv_file" class="select-css" style="margin: 0;" onchange="this.form.submit()">
  42. <? foreach($cleanArrs as $file){ ?>
  43. <option value="<?echo $file?>" <?echo isSelected($file, $selected_csv)?>><?echo $file?></option>
  44. <? } ?>
  45. </select>
  46. </div>
  47. </form>
  48. <script>
  49. function makeplot(){
  50. Plotly.d3.csv('<?echo $url_total_info;?>', (allRows)=>{
  51. const {mean_energy, mean_spread} = parseResultsTable(allRows, "<?echo $selected_csv;?>");
  52. Plotly.d3.csv('<?echo $url.$selected_csv;?>', function(data){processData(data, mean_energy, mean_spread)});
  53. }
  54. );
  55. }
  56. function parseResultsTable(allRows, energy_point){
  57. // Extracts a row following the energy point in the total csv file (or null if energy point is not exists)
  58. data = energy_point.slice(0, -4).split('_');
  59. for (var i=0; i<allRows.length; i++){
  60. if (allRows[i].first_run == data[1] ){
  61. return allRows[i];
  62. }
  63. }
  64. return null;
  65. }
  66. function parseRow(row){
  67. // Parses a row from the detailed csv file
  68. row['start_time'] = Date.parse(row['compton_start']);
  69. row['stop_time'] = Date.parse(row['compton_stop']);
  70. row['center_time'] = new Date((row['start_time'] + row['stop_time'])/2);
  71. row['timedelta'] = (row['stop_time'] - row['start_time'])/2/1000; // in seconds
  72. text_str = "<b>Compton</b><br>" + "<i>Start: </i>" +
  73. row['compton_start'] + "<br><i>Stop: </i>" + row['compton_stop'] + "<br><br>";
  74. row['text_str'] = text_str + "<b>Runs: </b>" + row['run_first'] + " - " + row['run_last'] + "<br><br>";
  75. return row;
  76. }
  77. function processSpread(data, elementId, mean_value){
  78. let x = [], y = [], std_y = []
  79. for (var i=0; i<data.length; i++){
  80. const {center_time, spread_mean, spread_std} = parseRow(data[i]);
  81. x.push(center_time);
  82. y.push(spread_mean);
  83. std_y.push(spread_std);
  84. }
  85. makeSpreadPlot(elementId, x, y, std_y, mean_value);
  86. }
  87. function kde(x, y, w) {
  88. const ts = (t) => t.getTime()/1000;
  89. const toDateTime = (secs) => {
  90. let t = new Date(0);
  91. t.setSeconds(secs);
  92. return t;
  93. };
  94. const steps = 1000;
  95. const dt = (ts(x[x.length - 1]) - ts(x[0]))/steps;
  96. const kernel = (x, x0, w0, y0) => {
  97. if (Math.abs(x-x0)>w0){
  98. return 0;
  99. }
  100. return y0/w0;
  101. //return y0*3*(1-((x-x0)/w0/2)**2)/4;
  102. };
  103. const get_est = (timestamp) => {
  104. let val = 0
  105. for (var i=0; i<x.length; i++){
  106. val += kernel(timestamp, ts(x[i]), w[i], y[i]);
  107. }
  108. return val;
  109. };
  110. //console.log(x, y);
  111. const timestamp_arr = Plotly.d3.range(steps).map(function(i){return ts(x[0])+i*dt;});
  112. let kdex = [];
  113. let kdey = [];
  114. for (var j=0; j<timestamp_arr.length; j++){
  115. kdex.push(toDateTime(timestamp_arr[j]));
  116. kdey.push(get_est(timestamp_arr[j]));
  117. }
  118. //console.log(kdex, kdey);
  119. return [kdex, kdey]
  120. }
  121. function oldAverage(E, L){
  122. //Averager by the old method with E and L only
  123. if (E.length !== L.length){
  124. return null;
  125. }
  126. let EL = 0;
  127. let sL = 0;
  128. for (let i = 0; i<E.length; i++){
  129. EL += parseFloat(E[i])*parseFloat(L[i]);
  130. sL += parseFloat(L[i]);
  131. }
  132. return EL/sL;
  133. }
  134. function processData(allRows, mean_energy, mean_spread) {
  135. // Processes all data rows
  136. var dict = {};
  137. dict['x'] = [];
  138. dict['e_mean'] = [];
  139. dict['e_std'] = [];
  140. dict['spread_mean'] = [];
  141. dict['spread_std'] = [];
  142. dict['compton'] = [];
  143. dict['lum'] = [];
  144. dict['twidth'] = [];
  145. for (var i=0; i<allRows.length; i++){
  146. const row = parseRow(allRows[i]);
  147. dict['x'].push( row['center_time'] );
  148. dict['e_mean'].push( row['e_mean'] );
  149. dict['e_std'].push( row['e_std'] );
  150. dict['spread_mean'].push( row['spread_mean'] );
  151. dict['spread_std'].push( row['spread_std'] );
  152. dict['compton'].push( row['text_str'] );
  153. dict['lum'].push( row['luminosity'] );
  154. dict['twidth'].push( row['timedelta'] );
  155. }
  156. const [a, b] = kde(dict['x'], dict['lum'], dict['twidth']);
  157. dict['kdex'] = a;
  158. dict['kdey'] = b;
  159. //console.log(dict['kdex'], dict['kdey']);
  160. //oldAverage(y, dict['lum']);
  161. dict['mean_energy_total'] = mean_energy;
  162. dict['old_mean_energy_total'] = oldAverage(dict['e_mean'], dict['lum']);
  163. dict['mean_spread_total'] = mean_spread;
  164. makePlotly(dict, "gd");
  165. }
  166. function makePlotly(dict, elementId){
  167. const getYRange = (y, std_y) => {
  168. const ys = [...y].sort();
  169. const std_ys = [...std_y].sort();
  170. let idx = Math.floor(ys.length/2);
  171. const y0 = parseFloat(ys[idx]);
  172. const std0 = parseFloat(std_ys[idx]);
  173. return [y0-6*std0, y0+6*std0];
  174. };
  175. var trace1 = {
  176. x: dict['x'],
  177. y: dict['e_mean'],
  178. yaxis: 'y3',
  179. mode: 'markers',
  180. text: dict['compton'],
  181. hovertemplate: "%{text}<br><br>" + "<extra></extra>",
  182. hovermode: "x",
  183. error_y: {
  184. type: 'data',
  185. array: dict['e_std'],
  186. color: '#260101',
  187. },
  188. showlegend: false,
  189. marker: {
  190. color: '#260101',
  191. },
  192. type: "scatter",
  193. };
  194. var trace2 = {
  195. x: dict['x'],
  196. y: dict['spread_mean'],
  197. yaxis: 'y2',
  198. mode: 'markers',
  199. text: dict['compton'],
  200. hovertemplate: "%{text}<br><br>" + "<extra></extra>",
  201. hovermode: "x",
  202. error_y: {
  203. type: 'data',
  204. array: dict['spread_std'],
  205. color: '#260101',
  206. },
  207. showlegend: false,
  208. marker: {
  209. color: '#260101',
  210. },
  211. type: "scatter",
  212. };
  213. var trace3 = {
  214. x: dict['kdex'],
  215. y: dict['kdey'],
  216. hovertemplate: "%{y}<br><br>" + "<extra></extra>",
  217. hovermode: "x",
  218. showlegend: false,
  219. marker: {
  220. color: '#F23030',
  221. },
  222. line: {
  223. shape: 'hvh',
  224. },
  225. type: "scatter",
  226. };
  227. var traces = [trace1, trace2, trace3];
  228. var updatemenus = [];
  229. if (dict['mean_energy_total']){
  230. updatemenus = [{
  231. buttons: [
  232. {
  233. args:[{'shapes[0].visible': true, 'shapes[1].visible': false, 'title': 'Mean energy: ' + parseFloat(dict['mean_energy_total']).toFixed(3) + ' MeV',}],
  234. label: 'Current average method',
  235. method: 'relayout'
  236. }, {
  237. args:[{'shapes[0].visible': false, 'shapes[1].visible': true, 'title': 'Mean energy: ' + dict['old_mean_energy_total'].toFixed(3) + ' MeV',}],
  238. label: 'Former average method',
  239. method: 'relayout'
  240. },
  241. ],
  242. direction: 'center',
  243. showactive: 'true',
  244. type: 'dropdown',
  245. y: 1.1,
  246. xanchor: 'left',
  247. yanchor: 'top',
  248. active: 0,
  249. }];
  250. }
  251. var layout = {
  252. title: 'Mean energy: ' + dict['mean_energy_total'] + ' MeV',
  253. updatemenus: updatemenus,
  254. font: {
  255. size: 18,
  256. },
  257. xaxis: {
  258. title: "Time, NSK",
  259. automargin: true,
  260. },
  261. yaxis3: {
  262. domain: [0.6, 1],
  263. title: "Mean energy, MeV",
  264. automargin: true,
  265. //showspikes: true,
  266. //spikemode: "across",
  267. //spikesnap: "data",
  268. },
  269. yaxis2: {
  270. domain: [0.3, 0.5],
  271. title: "Spread, MeV",
  272. autorange: false,
  273. range: getYRange(dict['spread_mean'], dict['spread_std']),
  274. //showspikes: true,
  275. //spikemode: "across",
  276. //spikesnap: "data",
  277. },
  278. yaxis: {
  279. domain: [0, 0.2],
  280. automargin: true,
  281. zeroline: true,
  282. rangemode: 'positive',
  283. title: "L, nb<sup>-1</sup>/s",
  284. hoverformat: '.2f',
  285. },
  286. paper_bgcolor: 'rgba(0,0,0,0)',
  287. plot_bgcolor: 'rgba(0,0,0,0)',
  288. autosize: true,
  289. };
  290. if (dict['mean_energy_total']){
  291. layout['shapes'] = [{
  292. type: 'line',
  293. yref: 'y3',
  294. xref: 'paper',
  295. x0: 0,
  296. x1: 1,
  297. y0: dict['mean_energy_total'],
  298. y1: dict['mean_energy_total'],
  299. line: {
  300. color: '#590A0A',
  301. },
  302. },
  303. {
  304. type: 'line',
  305. yref: 'y3',
  306. xref: 'paper',
  307. x0: 0,
  308. x1: 1,
  309. y0: dict['old_mean_energy_total'],
  310. y1: dict['old_mean_energy_total'],
  311. line: {
  312. color: '#590A0A',
  313. },
  314. visible: false,
  315. },
  316. {
  317. type: 'line',
  318. yref: 'y2',
  319. xref: 'paper',
  320. x0: 0,
  321. x1: 1,
  322. y0: dict['mean_spread_total'],
  323. y1: dict['mean_spread_total'],
  324. line: {
  325. color: '#590A0A',
  326. },
  327. visible: true,
  328. }];
  329. }
  330. Plotly.newPlot('gd', traces, layout, {modeBarButtonsToRemove: ['toImage'], responsive: true,});
  331. }
  332. makeplot();
  333. </script>
  334. </body>
  335. </html>