0
0

init.php 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. <!-- https://www.createwithdata.com/chartjs-and-csv/ -->
  2. <!-- https://towardsdatascience.com/4-ways-to-improve-your-plotly-graphs-517c75947f7e -->
  3. <?php
  4. $branch = 'dev';
  5. function getsmth($branch){
  6. $url = "https://cmd.inp.nsk.su/~compton/gitlist/compton_tables/raw/".$branch."/tables/";
  7. $text = file_get_contents($url);
  8. $arrays = explode("\n", $text);
  9. $clean_arrs = array_filter($arrays, function($value){
  10. $temp_arr = explode('/', $value);
  11. return preg_match("/[A-Z]+[0-9]+\//", $value);
  12. });
  13. foreach($clean_arrs as &$val){
  14. $val = substr($val, 0, -1);
  15. }
  16. return $clean_arrs;
  17. }
  18. $availableSeasons = getsmth($branch);
  19. $season = isset($_GET["season"])&&in_array($_GET["season"], $availableSeasons) ? $_GET["season"] : reset($availableSeasons);
  20. $url = "https://cmd.inp.nsk.su/~compton/gitlist/compton_tables/raw/".$branch."/tables/".$season."/";
  21. $url_total_info = "https://cmd.inp.nsk.su/~compton/gitlist/compton_tables/raw/".$branch."/tables/".$season.".csv";
  22. $text = file_get_contents($url);
  23. $arrays = explode("\n", $text);
  24. $cleanArrs = array_filter($arrays, function($value) {
  25. return end(explode('.', $value)) == "csv";
  26. });
  27. function isSelected($a, $b){
  28. if ($a==$b){
  29. return "selected";
  30. }
  31. return "";
  32. }
  33. $selected_csv = isset($_GET["csv_file"])&&in_array($_GET["csv_file"], $cleanArrs) ? $_GET["csv_file"] : reset($cleanArrs);
  34. ?>
  35. <html>
  36. <head>
  37. <script src="plotly-latest.min.js"></script>
  38. <!-- <script src="https://cdn.plot.ly/plotly-latest.min.js"></script> -->
  39. <meta name="viewport" content="width=device-width, initial-scale=1">
  40. <link rel="stylesheet" href="main.css">
  41. <title>Compton interactive plots</title>
  42. <!-- <script src="chart.js"></script> -->
  43. </head>
  44. <body>
  45. <div id="gd" style="height: max(80vh, 600px); padding-bottom: 20px;"></div>
  46. <form name="form" action="" method="get">
  47. <p style="text-align: center;">Select energy point:</p>
  48. <div style="margin: 0 auto; display: flex; justify-content: center;">
  49. <select name="season" class="select-css" style="margin: 0;" onchange="this.form.submit()">
  50. <? foreach($availableSeasons as $s){ ?>
  51. <option value="<?echo $s?>" <?echo isSelected($s, $season)?>><?echo $s?></option>
  52. <? } ?>
  53. </select>
  54. <select name="csv_file" class="select-css" style="margin: 0;" onchange="this.form.submit()">
  55. <? foreach($cleanArrs as $file){ ?>
  56. <option value="<?echo $file?>" <?echo isSelected($file, $selected_csv)?>><?echo $file?></option>
  57. <? } ?>
  58. </select>
  59. </div>
  60. </form>
  61. <script>
  62. function makeplot(){
  63. Plotly.d3.csv('<?echo $url_total_info;?>', (allRows)=>{
  64. const {mean_energy, mean_spread} = parseResultsTable(allRows, "<?echo $selected_csv;?>");
  65. Plotly.d3.csv('<?echo $url.$selected_csv;?>', function(data){processData(data, mean_energy, mean_spread)});
  66. }
  67. );
  68. }
  69. function parseResultsTable(allRows, energy_point){
  70. // Extracts a row following the energy point in the total csv file (or null if energy point is not exists)
  71. data = energy_point.slice(0, -4).split('_');
  72. for (var i=0; i<allRows.length; i++){
  73. if (allRows[i].first_run == data[1] ){
  74. return allRows[i];
  75. }
  76. }
  77. return null;
  78. }
  79. function parseRow(row){
  80. // Parses a row from the detailed csv file
  81. row['start_time'] = Date.parse(row['compton_start']);
  82. row['stop_time'] = Date.parse(row['compton_stop']);
  83. row['center_time'] = new Date((row['start_time'] + row['stop_time'])/2);
  84. row['timedelta'] = (row['stop_time'] - row['start_time'])/2/1000; // in seconds
  85. text_str = "<b>Compton</b><br>" + "<i>Start: </i>" +
  86. row['compton_start'] + "<br><i>Stop: </i>" + row['compton_stop'] + "<br><br>";
  87. row['text_str'] = text_str + "<b>Runs: </b>" + row['run_first'] + " - " + row['run_last'] + "<br><br>";
  88. return row;
  89. }
  90. function processSpread(data, elementId, mean_value){
  91. let x = [], y = [], std_y = []
  92. for (var i=0; i<data.length; i++){
  93. const {center_time, spread_mean, spread_std} = parseRow(data[i]);
  94. x.push(center_time);
  95. y.push(spread_mean);
  96. std_y.push(spread_std);
  97. }
  98. makeSpreadPlot(elementId, x, y, std_y, mean_value);
  99. }
  100. function kde(x, y, w) {
  101. const ts = (t) => t.getTime()/1000;
  102. const toDateTime = (secs) => {
  103. let t = new Date(0);
  104. t.setSeconds(secs);
  105. return t;
  106. };
  107. const steps = 1000;
  108. const dt = (ts(x[x.length - 1]) - ts(x[0]))/steps;
  109. const kernel = (x, x0, w0, y0) => {
  110. if (Math.abs(x-x0)>w0){
  111. return 0;
  112. }
  113. return y0/w0;
  114. //return y0*3*(1-((x-x0)/w0/2)**2)/4;
  115. };
  116. const get_est = (timestamp) => {
  117. let val = 0
  118. for (var i=0; i<x.length; i++){
  119. val += kernel(timestamp, ts(x[i]), w[i], y[i]);
  120. }
  121. return val;
  122. };
  123. //console.log(x, y);
  124. const timestamp_arr = Plotly.d3.range(steps).map(function(i){return ts(x[0])+i*dt;});
  125. let kdex = [];
  126. let kdey = [];
  127. for (var j=0; j<timestamp_arr.length; j++){
  128. kdex.push(toDateTime(timestamp_arr[j]));
  129. kdey.push(get_est(timestamp_arr[j]));
  130. }
  131. //console.log(kdex, kdey);
  132. return [kdex, kdey]
  133. }
  134. function oldAverage(E, L){
  135. //Averager by the old method with E and L only
  136. if (E.length !== L.length){
  137. return null;
  138. }
  139. let EL = 0;
  140. let sL = 0;
  141. for (let i = 0; i<E.length; i++){
  142. EL += parseFloat(E[i])*parseFloat(L[i]);
  143. sL += parseFloat(L[i]);
  144. }
  145. return EL/sL;
  146. }
  147. function processData(allRows, mean_energy, mean_spread) {
  148. // Processes all data rows
  149. var dict = {};
  150. dict['x'] = [];
  151. dict['e_mean'] = [];
  152. dict['e_std'] = [];
  153. dict['spread_mean'] = [];
  154. dict['spread_std'] = [];
  155. dict['compton'] = [];
  156. dict['lum'] = [];
  157. dict['twidth'] = [];
  158. for (var i=0; i<allRows.length; i++){
  159. const row = parseRow(allRows[i]);
  160. dict['x'].push( row['center_time'] );
  161. dict['e_mean'].push( row['e_mean'] );
  162. dict['e_std'].push( row['e_std'] );
  163. dict['spread_mean'].push( row['spread_mean'] );
  164. dict['spread_std'].push( row['spread_std'] );
  165. dict['compton'].push( row['text_str'] );
  166. dict['lum'].push( row['luminosity'] );
  167. dict['twidth'].push( row['timedelta'] );
  168. }
  169. const [a, b] = kde(dict['x'], dict['lum'], dict['twidth']);
  170. dict['kdex'] = a;
  171. dict['kdey'] = b;
  172. //console.log(dict['kdex'], dict['kdey']);
  173. //oldAverage(y, dict['lum']);
  174. dict['mean_energy_total'] = mean_energy;
  175. dict['old_mean_energy_total'] = oldAverage(dict['e_mean'], dict['lum']);
  176. dict['mean_spread_total'] = mean_spread;
  177. makePlotly(dict, "gd");
  178. }
  179. function makePlotly(dict, elementId){
  180. const getYRange = (y, std_y) => {
  181. const ys = [...y].sort();
  182. const std_ys = [...std_y].sort();
  183. let idx = Math.floor(ys.length/2);
  184. const y0 = parseFloat(ys[idx]);
  185. const std0 = parseFloat(std_ys[idx]);
  186. return [y0-6*std0, y0+6*std0];
  187. };
  188. var trace1 = {
  189. x: dict['x'],
  190. y: dict['e_mean'],
  191. yaxis: 'y3',
  192. mode: 'markers',
  193. text: dict['compton'],
  194. hovertemplate: "%{text}<br><br>" + "<extra></extra>",
  195. hovermode: "x",
  196. error_y: {
  197. type: 'data',
  198. array: dict['e_std'],
  199. color: '#260101',
  200. },
  201. showlegend: false,
  202. marker: {
  203. color: '#260101',
  204. },
  205. type: "scatter",
  206. };
  207. var trace2 = {
  208. x: dict['x'],
  209. y: dict['spread_mean'],
  210. yaxis: 'y2',
  211. mode: 'markers',
  212. text: dict['compton'],
  213. hovertemplate: "%{text}<br><br>" + "<extra></extra>",
  214. hovermode: "x",
  215. error_y: {
  216. type: 'data',
  217. array: dict['spread_std'],
  218. color: '#260101',
  219. },
  220. showlegend: false,
  221. marker: {
  222. color: '#260101',
  223. },
  224. type: "scatter",
  225. };
  226. var trace3 = {
  227. x: dict['kdex'],
  228. y: dict['kdey'],
  229. hovertemplate: "%{y}<br><br>" + "<extra></extra>",
  230. hovermode: "x",
  231. showlegend: false,
  232. marker: {
  233. color: '#F23030',
  234. },
  235. line: {
  236. shape: 'hvh',
  237. },
  238. type: "scatter",
  239. };
  240. var traces = [trace1, trace2, trace3];
  241. var updatemenus = [];
  242. if (dict['mean_energy_total']){
  243. updatemenus = [{
  244. buttons: [
  245. {
  246. args:[{'shapes[0].visible': true, 'shapes[1].visible': false, 'title': 'Mean energy: ' + parseFloat(dict['mean_energy_total']).toFixed(3) + ' MeV',}],
  247. label: 'Current average method',
  248. method: 'relayout'
  249. }, {
  250. args:[{'shapes[0].visible': false, 'shapes[1].visible': true, 'title': 'Mean energy: ' + dict['old_mean_energy_total'].toFixed(3) + ' MeV',}],
  251. label: 'Former average method',
  252. method: 'relayout'
  253. },
  254. ],
  255. direction: 'center',
  256. showactive: 'true',
  257. type: 'dropdown',
  258. y: 1.1,
  259. xanchor: 'left',
  260. yanchor: 'top',
  261. active: 0,
  262. }];
  263. }
  264. var layout = {
  265. title: 'Mean energy: ' + dict['mean_energy_total'] + ' MeV',
  266. updatemenus: updatemenus,
  267. font: {
  268. size: 18,
  269. },
  270. xaxis: {
  271. title: "Time, NSK",
  272. automargin: true,
  273. },
  274. yaxis3: {
  275. domain: [0.6, 1],
  276. title: "Mean energy, MeV",
  277. automargin: true,
  278. //showspikes: true,
  279. //spikemode: "across",
  280. //spikesnap: "data",
  281. },
  282. yaxis2: {
  283. domain: [0.3, 0.5],
  284. title: "Spread, MeV",
  285. autorange: false,
  286. range: getYRange(dict['spread_mean'], dict['spread_std']),
  287. //showspikes: true,
  288. //spikemode: "across",
  289. //spikesnap: "data",
  290. },
  291. yaxis: {
  292. domain: [0, 0.2],
  293. automargin: true,
  294. zeroline: true,
  295. rangemode: 'positive',
  296. title: "L, nb<sup>-1</sup>/s",
  297. hoverformat: '.2f',
  298. },
  299. paper_bgcolor: 'rgba(0,0,0,0)',
  300. plot_bgcolor: 'rgba(0,0,0,0)',
  301. autosize: true,
  302. };
  303. if (dict['mean_energy_total']){
  304. layout['shapes'] = [{
  305. type: 'line',
  306. yref: 'y3',
  307. xref: 'paper',
  308. x0: 0,
  309. x1: 1,
  310. y0: dict['mean_energy_total'],
  311. y1: dict['mean_energy_total'],
  312. line: {
  313. color: '#590A0A',
  314. },
  315. },
  316. {
  317. type: 'line',
  318. yref: 'y3',
  319. xref: 'paper',
  320. x0: 0,
  321. x1: 1,
  322. y0: dict['old_mean_energy_total'],
  323. y1: dict['old_mean_energy_total'],
  324. line: {
  325. color: '#590A0A',
  326. },
  327. visible: false,
  328. },
  329. {
  330. type: 'line',
  331. yref: 'y2',
  332. xref: 'paper',
  333. x0: 0,
  334. x1: 1,
  335. y0: dict['mean_spread_total'],
  336. y1: dict['mean_spread_total'],
  337. line: {
  338. color: '#590A0A',
  339. },
  340. visible: true,
  341. }];
  342. }
  343. Plotly.newPlot('gd', traces, layout, {modeBarButtonsToRemove: ['toImage'], responsive: true,});
  344. }
  345. makeplot();
  346. </script>
  347. </body>
  348. </html>