0
0

init.php 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373
  1. <!-- https://www.createwithdata.com/chartjs-and-csv/ -->
  2. <!-- https://towardsdatascience.com/4-ways-to-improve-your-plotly-graphs-517c75947f7e -->
  3. <?php
  4. $branch = 'dev';
  5. $availableSeasons = array("RHO2018", "NNBAR2021");
  6. $season = isset($_GET["season"])&&in_array($_GET["season"], $availableSeasons) ? $_GET["season"] : reset($availableSeasons);
  7. $url = "https://cmd.inp.nsk.su/~compton/gitlist/compton_tables/raw/".$branch."/tables/".$season."/";
  8. $url_total_info = "https://cmd.inp.nsk.su/~compton/gitlist/compton_tables/raw/".$branch."/tables/".$season.".csv";
  9. $text = file_get_contents($url);
  10. $arrays = explode("\n", $text);
  11. $cleanArrs = array_filter($arrays, function($value) {
  12. return end(explode('.', $value)) == "csv";
  13. });
  14. function isSelected($a, $b){
  15. if ($a==$b){
  16. return "selected";
  17. }
  18. return "";
  19. }
  20. $selected_csv = isset($_GET["csv_file"])&&in_array($_GET["csv_file"], $cleanArrs) ? $_GET["csv_file"] : reset($cleanArrs);
  21. ?>
  22. <html>
  23. <head>
  24. <!--<script src="plotly-2.11.1.min.js"></script> -->
  25. <script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
  26. <meta name="viewport" content="width=device-width, initial-scale=1">
  27. <link rel="stylesheet" href="main.css">
  28. <title>Compton interactive plots</title>
  29. <!-- <script src="chart.js"></script> -->
  30. </head>
  31. <body>
  32. <div id="gd" style="height: max(80vh, 600px); padding-bottom: 20px;"></div>
  33. <form name="form" action="" method="get">
  34. <p style="text-align: center;">Select energy point:</p>
  35. <div style="margin: 0 auto; display: flex; justify-content: center;">
  36. <select name="season" class="select-css" style="margin: 0;" onchange="this.form.submit()">
  37. <?
  38. foreach($availableSeasons as $s){
  39. ?><option value="<?echo $s?>" <?echo isSelected($s, $season)?>><?echo $s?></option>
  40. <?
  41. }
  42. ?>
  43. </select>
  44. <select name="csv_file" class="select-css" style="margin: 0;" onchange="this.form.submit()">
  45. <?
  46. foreach($cleanArrs as $file){
  47. ?><option value="<?echo $file?>" <?echo isSelected($file, $selected_csv)?>><?echo $file?></option>
  48. <?
  49. }
  50. ?>
  51. </select>
  52. </div>
  53. </form>
  54. <script>
  55. function makeplot(){
  56. Plotly.d3.csv('<?echo $url_total_info;?>', (allRows)=>{
  57. const {mean_energy, mean_spread} = parseResultsTable(allRows, <?echo reset(explode('_', $selected_csv));?>);
  58. Plotly.d3.csv('<?echo $url.$selected_csv;?>', function(data){processData(data, mean_energy, mean_spread)});
  59. }
  60. );
  61. }
  62. function parseResultsTable(allRows, energy_point){
  63. // Extracts a row following the energy point in the total csv file (or null if energy point is not exists)
  64. for (var i=0; i<allRows.length; i++){
  65. if (allRows[i].energy_point == energy_point ){
  66. return allRows[i];
  67. }
  68. }
  69. return null;
  70. }
  71. function parseRow(row){
  72. // Parses a row from the detailed csv file
  73. row['start_time'] = Date.parse(row['compton_start']);
  74. row['stop_time'] = Date.parse(row['compton_stop']);
  75. row['center_time'] = new Date((row['start_time'] + row['stop_time'])/2);
  76. row['timedelta'] = (row['stop_time'] - row['start_time'])/2/1000; // in seconds
  77. text_str = "<b>Compton</b><br>" + "<i>Start: </i>" +
  78. row['compton_start'] + "<br><i>Stop: </i>" + row['compton_stop'] + "<br><br>";
  79. row['text_str'] = text_str + "<b>Runs: </b>" + row['run_first'] + " - " + row['run_last'] + "<br><br>";
  80. return row;
  81. }
  82. function processSpread(data, elementId, mean_value){
  83. let x = [], y = [], std_y = []
  84. for (var i=0; i<data.length; i++){
  85. const {center_time, spread_mean, spread_std} = parseRow(data[i]);
  86. x.push(center_time);
  87. y.push(spread_mean);
  88. std_y.push(spread_std);
  89. }
  90. makeSpreadPlot(elementId, x, y, std_y, mean_value);
  91. }
  92. function kde(x, y, w) {
  93. const ts = (t) => t.getTime()/1000;
  94. const toDateTime = (secs) => {
  95. let t = new Date(0);
  96. t.setSeconds(secs);
  97. return t;
  98. };
  99. const steps = 1000;
  100. const dt = (ts(x[x.length - 1]) - ts(x[0]))/steps;
  101. const kernel = (x, x0, w0, y0) => {
  102. if (Math.abs(x-x0)>w0){
  103. return 0;
  104. }
  105. return y0/w0;
  106. //return y0*3*(1-((x-x0)/w0/2)**2)/4;
  107. };
  108. const get_est = (timestamp) => {
  109. let val = 0
  110. for (var i=0; i<x.length; i++){
  111. val += kernel(timestamp, ts(x[i]), w[i], y[i]);
  112. }
  113. return val;
  114. };
  115. //console.log(x, y);
  116. const timestamp_arr = Plotly.d3.range(steps).map(function(i){return ts(x[0])+i*dt;});
  117. let kdex = [];
  118. let kdey = [];
  119. for (var j=0; j<timestamp_arr.length; j++){
  120. kdex.push(toDateTime(timestamp_arr[j]));
  121. kdey.push(get_est(timestamp_arr[j]));
  122. }
  123. //console.log(kdex, kdey);
  124. return [kdex, kdey]
  125. }
  126. function oldAverage(E, L){
  127. //Averager by the old method with E and L only
  128. if (E.length !== L.length){
  129. return null;
  130. }
  131. let EL = 0;
  132. let sL = 0;
  133. for (let i = 0; i<E.length; i++){
  134. EL += parseFloat(E[i])*parseFloat(L[i]);
  135. sL += parseFloat(L[i]);
  136. }
  137. return EL/sL;
  138. }
  139. function processData(allRows, mean_energy, mean_spread) {
  140. // Processes all data rows
  141. var dict = {};
  142. dict['x'] = [];
  143. dict['e_mean'] = [];
  144. dict['e_std'] = [];
  145. dict['spread_mean'] = [];
  146. dict['spread_std'] = [];
  147. dict['compton'] = [];
  148. dict['lum'] = [];
  149. dict['twidth'] = [];
  150. for (var i=0; i<allRows.length; i++){
  151. const row = parseRow(allRows[i]);
  152. dict['x'].push( row['center_time'] );
  153. dict['e_mean'].push( row['e_mean'] );
  154. dict['e_std'].push( row['e_std'] );
  155. dict['spread_mean'].push( row['spread_mean'] );
  156. dict['spread_std'].push( row['spread_std'] );
  157. dict['compton'].push( row['text_str'] );
  158. dict['lum'].push( row['luminosity'] );
  159. dict['twidth'].push( row['timedelta'] );
  160. }
  161. const [a, b] = kde(dict['x'], dict['lum'], dict['twidth']);
  162. dict['kdex'] = a;
  163. dict['kdey'] = b;
  164. //console.log(dict['kdex'], dict['kdey']);
  165. //oldAverage(y, dict['lum']);
  166. dict['mean_energy_total'] = mean_energy;
  167. dict['old_mean_energy_total'] = oldAverage(dict['e_mean'], dict['lum']);
  168. dict['mean_spread_total'] = mean_spread;
  169. makePlotly(dict, "gd");
  170. }
  171. function makePlotly(dict, elementId){
  172. const getYRange = (y, std_y) => {
  173. const ys = [...y].sort();
  174. const std_ys = [...std_y].sort();
  175. let idx = Math.floor(ys.length/2);
  176. const y0 = parseFloat(ys[idx]);
  177. const std0 = parseFloat(std_ys[idx]);
  178. return [y0-6*std0, y0+6*std0];
  179. };
  180. var trace1 = {
  181. x: dict['x'],
  182. y: dict['e_mean'],
  183. yaxis: 'y3',
  184. mode: 'markers',
  185. text: dict['compton'],
  186. hovertemplate: "%{text}<br><br>" + "<extra></extra>",
  187. hovermode: "x",
  188. error_y: {
  189. type: 'data',
  190. array: dict['e_std'],
  191. color: '#260101',
  192. },
  193. showlegend: false,
  194. marker: {
  195. color: '#260101',
  196. },
  197. type: "scatter",
  198. };
  199. var trace2 = {
  200. x: dict['x'],
  201. y: dict['spread_mean'],
  202. yaxis: 'y2',
  203. mode: 'markers',
  204. text: dict['compton'],
  205. hovertemplate: "%{text}<br><br>" + "<extra></extra>",
  206. hovermode: "x",
  207. error_y: {
  208. type: 'data',
  209. array: dict['spread_std'],
  210. color: '#260101',
  211. },
  212. showlegend: false,
  213. marker: {
  214. color: '#260101',
  215. },
  216. type: "scatter",
  217. };
  218. var trace3 = {
  219. x: dict['kdex'],
  220. y: dict['kdey'],
  221. hovertemplate: "%{y}<br><br>" + "<extra></extra>",
  222. hovermode: "x",
  223. showlegend: false,
  224. marker: {
  225. color: '#F23030',
  226. },
  227. line: {
  228. shape: 'hvh',
  229. },
  230. type: "scatter",
  231. };
  232. var traces = [trace1, trace2, trace3];
  233. var updatemenus = [];
  234. if (dict['mean_energy_total']){
  235. updatemenus = [{
  236. buttons: [
  237. {
  238. args:[{'shapes[0].visible': true, 'shapes[1].visible': false, 'title': 'Mean energy: ' + parseFloat(dict['mean_energy_total']).toFixed(3) + ' MeV',}],
  239. label: 'Current average method',
  240. method: 'relayout'
  241. }, {
  242. args:[{'shapes[0].visible': false, 'shapes[1].visible': true, 'title': 'Mean energy: ' + dict['old_mean_energy_total'].toFixed(3) + ' MeV',}],
  243. label: 'Former average method',
  244. method: 'relayout'
  245. },
  246. ],
  247. direction: 'center',
  248. showactive: 'true',
  249. type: 'dropdown',
  250. y: 1.1,
  251. xanchor: 'left',
  252. yanchor: 'top',
  253. active: 0,
  254. }];
  255. }
  256. var layout = {
  257. title: 'Mean energy: ' + dict['mean_energy_total'] + ' MeV',
  258. updatemenus: updatemenus,
  259. font: {
  260. size: 18,
  261. },
  262. xaxis: {
  263. title: "Time, NSK",
  264. automargin: true,
  265. },
  266. yaxis3: {
  267. domain: [0.6, 1],
  268. title: "Mean energy, MeV",
  269. automargin: true,
  270. //showspikes: true,
  271. //spikemode: "across",
  272. //spikesnap: "data",
  273. },
  274. yaxis2: {
  275. domain: [0.3, 0.5],
  276. title: "Spread, MeV",
  277. autorange: false,
  278. range: getYRange(dict['spread_mean'], dict['spread_std']),
  279. //showspikes: true,
  280. //spikemode: "across",
  281. //spikesnap: "data",
  282. },
  283. yaxis: {
  284. domain: [0, 0.2],
  285. automargin: true,
  286. zeroline: true,
  287. rangemode: 'positive',
  288. title: "L, nb<sup>-1</sup>/s",
  289. hoverformat: '.2f',
  290. },
  291. paper_bgcolor: 'rgba(0,0,0,0)',
  292. plot_bgcolor: 'rgba(0,0,0,0)',
  293. autosize: true,
  294. };
  295. if (dict['mean_energy_total']){
  296. layout['shapes'] = [{
  297. type: 'line',
  298. yref: 'y3',
  299. xref: 'paper',
  300. x0: 0,
  301. x1: 1,
  302. y0: dict['mean_energy_total'],
  303. y1: dict['mean_energy_total'],
  304. line: {
  305. color: '#590A0A',
  306. },
  307. },
  308. {
  309. type: 'line',
  310. yref: 'y3',
  311. xref: 'paper',
  312. x0: 0,
  313. x1: 1,
  314. y0: dict['old_mean_energy_total'],
  315. y1: dict['old_mean_energy_total'],
  316. line: {
  317. color: '#590A0A',
  318. },
  319. visible: false,
  320. },
  321. {
  322. type: 'line',
  323. yref: 'y2',
  324. xref: 'paper',
  325. x0: 0,
  326. x1: 1,
  327. y0: dict['mean_spread_total'],
  328. y1: dict['mean_spread_total'],
  329. line: {
  330. color: '#590A0A',
  331. },
  332. visible: true,
  333. }];
  334. }
  335. Plotly.newPlot('gd', traces, layout, {modeBarButtonsToRemove: ['toImage'], responsive: true,});
  336. }
  337. makeplot();
  338. </script>
  339. </body>
  340. </html>