Содержание

1 Экспериментальная установка					
2	ПО		2		
	2.1	Источник напряжения	2		
	2.2	Оцифровщик	3		
3	Опр	еделение нулевого уровня	5		

1 Экспериментальная установка

Оцифровщик	CAEN V1730SB
LED-генератор	SP5601
Источник напряжения	V6533N
Осциллограф	OWON TDS8204
ФЭУ	H1837S

Таблица 1: Таблица приборов

2 ПО

2.1 Источник напряжения

Для управления модулем ВВИ V6533N используется программа gvmepp. Чтобы ее запустить, используйте следующую команду в терминале:

cd /home/csi/Local/Sikach/projects/VMEpp/gui/gvmepp/build && ./gvmepp

В появившемся окне в панели меню нажмите File -> Connect. Появившееся окно диалога соединения должно выглядеть вот так:

	gVME++ –										. ×			
Ē	ile \	/iew <u>C</u> or	ofig	<u>A</u> dd										
	Input	s & Outp	uts	Pulser	& Scaler									
	Outpu	ts												
		Source:	DS		- Pola	rity:	Direct		LED	polari	ty:	Active	high	
		Source:	AS			Conn	ection			×	y:	Active	high	
		Source:	DTAC	1							:y:	Active	high	
		Source:	BERR	Type:	V2718 -	Link:	0	Cone	t: 0		:y:	Active	high	
		Source:	LMON								:y:	Active	high	
					Connect			Canc	el					
	Input	6												
					Pola	rity:	Direct		LED	polari	ty:	Active	high	
					Pola	rity:	Direct		LED	polari	ty:	Active	high	

Рис. 1: Диалог соединения, Туре = V2718, Link = 0, Conet = 0

Нажмите Connect.

Далее в панели меню нажмите Add -> Device . Появившееся окно диалога должно выглядеть так:

gVME++ (V2718)								
<u>F</u> ile View <u>C</u> onfig <u>A</u> dd								
Inputs & Outputs Pulser & Scaler								
Outputs								
Source: DS - Polarity: Direct - LED polarity:	Active high 👻							
Source: AS - Polarity: Direct - LED polarity:	Active high 🚽							
Source:	Active high -							
Source:	Active high 👻							
Source: Device: V6533N - Address [31:16]: 0x4000 0000 -	Active high 👻							
Add Cancel								
Inputs								
Polacity: Dicact - LED polacity:	Active biob -							
Polarity: Direct 👻 LED polarity:	ACCIVE High +							
WRITE READ								

Рис. 2: Добавление модуля, Device = V6533N, Address = 0x4000 0000

Нажмите Add.

После этого появится окно управления модулем.

ЗАМЕЧАНИЕ. Не забудьте включить монитор статуса View -> V6533N::Monitor и в появившемся стыкуемом окне нажмите кнопку Start. Таким образом в этом окне вы будете наблюдать текущий статус модуля с интервалом в 1 секунду.

ВНИМАНИЕ! Не забывайте проверять статус подачи напряжение а) с помощью монитора и б) визуально (на передней панели модуля горит красный светодиод, если напряжение подано) перед каждой операцией (например, перед окрытием дверцы корпуса с ФЭУ).

2.2 Оцифровщик

Для работы с оцифровщиком используется программа CARDA . Откройте терминал и исполните следующую команду:

Carda

В появившемся окне в панели меню нажмите File -> Connect. Диалог соединения должен выглядеть так:

CARDA	_		×
File			
General Channel Plots & Analysis Trigger External trigger: DISABLED ▼ Post trigger (%): 50 € I/O level: TTL ▼			
Data & Recording Record size (samples): 100 🗲 Events per block: 1000 🗲			
Connection		×	
Type: OPL ▼ Link number: 1 ★ Conet node: 0 ★ VME base address (0x): Cancel Connect		0 🔶	
CARDA			

Рис. 3: Соединение, Type = OPL, LInk number = 1, Conet node = 0, Address = 0

ВНИМАНИЕ! Перед набором данных всегда нажимайте кнопку PROGRAM

ЗАМЕЧАНИЕ. Убедитесь, что в записываемом окне формы импульса есть достаточное количество (>= 100) точек до точки триггера для корректного определения нулевого уровня (baseline)

3 Определение нулевого уровня

Определим через множество

 W_n - множество целевых точек формы импульса на n-й итерации

 μ_n - усреднённое значение точек из множества $W_n,$

$$\mu_n = \frac{1}{|W_n|} \sum_{w \in W_n} w$$

 σ_n^2 - оценка среднеквадратичного отклонения значений из множества W_n

$$\sigma_n^2 = \frac{1}{|W_n| - 1} \sum_{w \in W_n} (w - \mu_n)^2$$

Тогда значение нулевого уровня определим как значение μ_n на последней итерации, при условии, что

*W*₀ - множество всех точек до триггера и

$$W_n = \{ w | w \in W_{n-1}, |w - \mu_n| < \sigma_n \},\$$

Кол-во итераций в нашем случае равно 4.