Erratum: Lepton-number-violating four-body tau lepton decays [Phys. Rev. D 85, 076006 (2012)]

G. López Castro and N. Quintero (Received 10 October 2012; published 24 October 2012)

DOI: 10.1103/PhysRevD.86.079904 PACS numbers: 11.30.Fs, 13.35.Dx, 14.60.Pq, 14.60.St, 99.10.Cd

We have found a bug in our FORTRAN code used to integrate over the four-body phase space of $\tau^- \to \nu_\tau l^- l^- X^+$ ($l=e, \mu$ and $X=\pi, K, \rho, K^*$) decays. The upper limits on the branching ratios as a function of the Majorana mass m_N of the heavy neutrino obtained by assuming $|V_{eN}|^2 = |V_{\mu N}|^2 \le 3 \times 10^{-3}$ get modified and are shown in Figs. 1 and 2 (these plots replace Figs. 3 and 4 in the published version). The exclusion limits in the $|V_{lN}|^2$ vs m_N region of parameter space

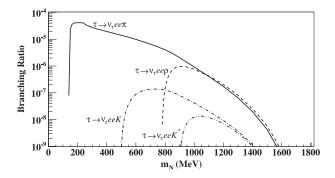


FIG. 1. Branching fraction of $\tau^- \to \nu_\tau e^- e^- X^+$ decays as a function of the Majorana neutrino mass.

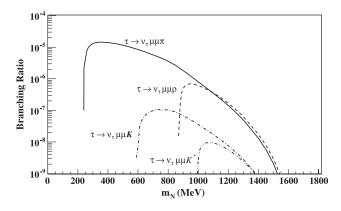


FIG. 2. Same as in Fig. 1 for the same-sign dimuon decay channels.

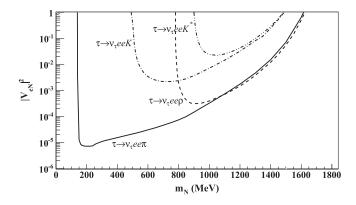


FIG. 3. Exclusion region in the mixing vs mass Majorana neutrino parameter space from $\tau^- \to \nu_\tau e^- e^- X$ decays.

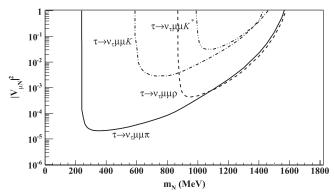


FIG. 4. Same as in Fig. 3 for the same-sign dimuon decay channels.

obtained by assuming a common branching ratio of $O(10^{-7})$ for all decay channels are modified as shown in Figs. 3 and 4 (they replace Figs. 5 and 6 in the published version).

Our conclusion regarding our proposed four-body lepton number violating tau decay channels are strengthened. These corrected results show that these decay channels allow one to exclude a wider region of the parameter space of heavier Majorana neutrinos than those provided by heavy meson D^- , $B^- \rightarrow l^- l^- M^+$ three-body decays.