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In a previous paper, new sets of parameters to replace the Michel parameters were
proposed to analyze data for the muon decay µ+ → e+νeνµ. Both (V − A) and (V + A)
charged currents with finite neutrino mass have been used to study this decay. In the present
paper, this parameterization is extended to a more general form, and a method for data
analysis (least squares) is discussed for the propose of determining the rate of contribution
from the (V +A) current. We find that there is a simple form in which the set of parameters
is related primitively to the physical quantities. It is shown that the Michel parameters are
one of the other sets that are obtained from this simple form by rearranging one term. We
derive the condition to obtain the same information regarding unknown physical quantities
in the case that the data are analyzed using these simple and rearranged forms separately.
We find that there is some possibility to get different results from these analyses, because the
equivalent condition is very delicate and the QED radiative corrections should be treated
carefully. We propose a consistent formula for data analysis. It is useful to compare the
value obtained in the least squares fit using the simple form with that obtained using the
prediction of the standard model, because a large difference is not expected, especially in
the case of the Majorana neutrino. Finally, we point out that the method we proposed to
determine the type of neutrino in the previous paper is incorrect.

§1. Introduction

Normal muon decay has been studied as a tool with high statistics to determine
the structure of the weak interaction. The purpose of this paper is to investigate the
effect of the (V + A) current added to the standard model and to find a consistent
formula to treat the QED corrections in the data analysis on the basis of the method
of least squares. Both the Dirac and Majorana neutrino cases are examined.

Recently, the TWIST group1) reported precise experimental data and analyzed
them using the helicity preserving four fermion weak interaction with (S±P ), (V ±A)
and T forms for the case of massless neutrino.2) They used the expression on the
basis of the Michel parameterization for the e+ energy spectrum

d2Γ

dx d cos θ
∝

[
N (x) + Pµ cos θP(x)

]
, (1.1)
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where

N (x) = 6x2
[
(1 − x) +

2
9

(4x − 3) ρM

]
, (1.2)

P(x) = 2x2 ξM

[
(1 − x) +

2
3

(4x − 3) δM

]
. (1.3)

Here, x is defined as x ≡ E/W , where E is the energy of the emitted positron
and W = (m2

µ + m2
e )/(2mµ) , and mµ and me are the muon and positron masses,

respectively. The angle θ is the direction of the emitted e+ with respect to the muon
polarization vector �Pµ at the instant of the µ+ decay. In the above expressions, to
simplify the following explanation, we do not include terms proportional to me or
neutrino masses, and also, QED radiative corrections are omitted.

The standard model predicts ρM = δM = 0.75 and ξM = 1 for these Michel
parameters. The conventional method of experimental data analysis has been to
determine the deviations from these predicted values. The new experimental values
reported by the TWIST group1) are∗)

ρM = 0.75080 ± 0.00032(stat) ± 0.00097(syst) ± 0.00023, (1.4)
δM = 0.74964 ± 0.00066(stat) ± 0.00112(syst), (1.5)
0.9960 < Pµξ � ξ < 1.0040 (90%CL). (1.6)

Note that the QED radiative corrections are taken into account in their analysis.
Because these deviations are small, it is useful to determine them directly.

In a previous paper,3) which is referred to as “ I ” hereafter, we proposed using
new parameters suitable for investigating these deviations. We showed that various
parameterizations are allowed by making different choices of the normalization factor
for the isotropic part of the energy spectrum. Among them, we mainly discussed the
specific one directly related to the Michel parameters. We refer to this as the Michel
parameterization. We assumed that the weak interaction Hamiltonian consists of
both (V −A) and (V +A) charged currents and that the neutrino has finite mass. As
a result, we have two kinds of lepton mixing matrices and three coupling constants
which represent the rates of mixture of the (V + A) current. We refer to these
unknown quantities as the “weak mixing constants ”.

In this paper, a more general parameterization is investigated within the frame-
work of the same Hamiltonian. We find a set of parameters expressed in a simple
form in terms of a combination of the weak mixing constants. We show that the
specific form corresponding to the Michel parameterization is one of many forms
that are derived from this simple form by rearranging a term in it. Sets of parame-
ters realized through such rearrangement are related to combinations of the weak
mixing constants in somewhat complicated manners. Of course, these different sets

∗) The last uncertainty of ρM represents its dependence on an additional Michel parameter ηM .

The term associated with ηM is not included in Eq. (1.2), because its contribution is proportional

to me in general, as discussed in §2. The ηM parameter itself becomes to be zero in some model.

If it is the case, the last uncertainty of ρM should be set to be zero. The TWIST group assumed

ηM = −0.007 ± 0.013.
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of parameters should contain the same information with regard to the weak mixing
constants. In §3, we seek a condition to obtain the same information with different
parameterizations in the case that experimental data are analyzed using the method
of least squares. It is pointed out that this condition is very delicate and we should
therefore be careful in treating QED radiative corrections in the data analysis.

In I, we also proposed a method for discriminating between the Dirac and Ma-
jorana neutrino experimentally using the method of least squares for the e+ energy
spectrum. However, we show in §2 of the present paper that this method is incorrect.
Making such a discrimination is not easy in the case of muon decay. This point is
discussed in §4.

In §2, we present thorough discussion of the general form of parameterization.
Then, the present experimental bounds for the new parameters are listed. In §3, we
study a condition for obtaining the information concerning the unknown weak mixing
constants and a method for appropriately taking the QED radiative corrections into
account. We propose a consistent formula for the method of least squares in the
data analysis. In §4, we give some comments. Appendix A contains expressions for
the polarization of the emitted positron.

§2. Parameterization of the decay spectrum

We assume the following form of the effective weak interaction Hamiltonian for
µ+ decay:4)

HW (x) =
GF√

2

{
j†eL αjα

µL + λj†eR αjα
µR + ηj†eR αjα

µL + κj†eL αjα
µR

}
+ H.c. (2.1)

Here, GF is the Fermi coupling constant.5) The coupling constants (λ, η and κ)
represent the rates of mixture of the (V + A) current for the combination of the
left(right)-handed charged leptonic currents j�L(R).∗) These currents are defined as

j�L α(x) =
2n∑

j=1

E�(x)γα(1 − γ5)U�jNj(x), (2.2)

j�R α(x) =
2n∑

j=1

E�(x)γα(1 + γ5)V�jNj(x) (2.3)

for the case of n generations. Here, U�j and V�j are the left- and right-handed
lepton mixing matrices, and E� and Nj represent, respectively, the mass eigenstates

∗) In order to understand the physical meaning of the coupling constants, let us consider a typical

example in gauge theory, the SU(2)L×SU(2)R×U(1) model with left- and right-handed weak gauge

bosons, WL and WR. The coupling constants in Eq. (2.1) are related to physical quantities as

λ ∼ (λc + tan2 ζ), κ = η ∼ (− tan ζ).

Here, we have λc = (M1/M2)
2, where M1 and M2 are the masses of the mass-eigenstate gauge

bosons, which are expressed in terms of the weak eigenstate gauge bosons WL and WR with the

mixing angle ζ. (For example, see Appendix A of I.)
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of charged leptons and neutrinos. Throughout this paper, neutrinos are assumed to
have finite masses, mν �= 0.

The decay spectrum of e+ in the rest frame of the polarized µ+ is defined as

d2Γ

dx d cos θ
= ΓW A

[N (x) + Pµ cos θP(x)
]
, (2.4)

where the sum over the spin of e+ has been taken and we have

ΓW =
mµ G2

F W 4

12π3
. (2.5)

The isotropic and anisotropic parts of the energy spectrum obtained from the
leptonic Hamiltonian in Eq. (2.1) are expressed as3),6)

N (x) =
(

1
A

)
[a+ n1(x) + ( k+ c + εm k+ m ) n2(x) + εm λdr n3(x)] , (2.6)

P(x) =
(

1
A

)
[a− p1(x) + ( k− c + εmk−m ) p2(x)] , (2.7)

where the decay formulae for the Dirac and Majorana neutrinos are obtained by
setting εm = 0 and εm = 1, respectively.

The constant A is introduced to Eqs. (2.4), (2.6) and (2.7) to simplify the coeffi-
cient of the prediction obtained from the standard model in N (x). Its explicit form
is given below [see Eq. (2.23)]. This A is called a “ normalization factor ”, following
I.

The x dependent parts of N (x) and P(x) are defined as follows:∗)

n1(x) = xp (3x − 2x2 − x2
0), (2.8)

n2(x) = 12xp x (1 − x), (2.9)
n3(x) = 6xp x0 (1 − x), (2.10)
p1(x) = x2

p (−1 + 2x − r2
0), (2.11)

p2(x) = 12x2
p (1 − x), (2.12)

where

xp =
√

x2 − x2
0, x0 =

me

W
= 9.7 · 10−3, r2

0 =
m2

e

mµ W
= 4.7 · 10−5. (2.13)

The first terms, n1(x) and p1(x), in N (x) and P(x), respectively, are the pre-
dictions of the standard model. They are called the “ standard functions ” in this

∗) The spectrum functions N (x) and P(x) in Eqs. (2.6) and (2.7) are precise, except in a very

small range from the maximum of x, xmax = 1 − [(mj + mk)2/(2mµ W )]. Here, mj and mk are

masses of two emitted neutrinos. This is because two kinds of kinematical factors come from the

phase space integral over the emitted neutrinos, and they can be set to unity over almost the entire

range of x. In other words, they possess significant x dependence only in an extremely narrow range

of order (mν/mµ)2 < O(10−16) near xmax. It should be noted that N (x) and P(x) become zero

sharply at xmax due to these kinematical factors. (For details, see §2.1 of I.)



New Parameterization in Muon Decay and the Type of Emitted Neutrino 1073

paper. The others, n2(x), n3(x) and p2(x), are called the “ deviation functions ”. In
these functions, all terms proportional to the neutrino mass are ignored, because of
the smallness of (mν/mµ) which is less than 9 · 10−9. Here, mν represents a typical
mass scale of emitted neutrinos and is assumed to satisfy mν < 1eV.

The coefficients a±, k± c, k±m and dr in N (x) and P(x) are constants. They are
obtained by summing some products of the coupling constants (λ, η and κ) and the
lepton mixing matrices (U� j and V� j) only over the emitted neutrinos. In the Dirac
neutrino case, they are defined by

a± =
(
1 ± λ2

)
, k± c =

(
1
2

)(
κ2 ± η2

)
. (2.14)

Here, it is assumed that all neutrinos can be emitted in the µ decay, and we have
used the relation

Σj |U�j |2 = Σj |V�j|2 = 1, (2.15)

coming from the unitarity condition, because j in the sum runs over all n neutrinos.
By contrast, in the Majorana neutrino case, we assume that there exist n ad-

ditional heavy neutrinos that are not emitted in the decay. These coefficients are
given as follows:

a± =
[(

1 − ue
2
) (

1 − uµ
2
) ± λ2 ve

2 vµ
2
]
, (2.16)

k± c =
(

1
2

)[
κ2 (1 − ue

2) vµ
2 ± η2 ve

2 (1 − uµ
2)

]
, (2.17)

k±m =
(

1
2

)[
κ2 |weµ |2 ± η2 |weµ h |2

]
, (2.18)

dr =
(

1
2

)
Re(weµ

∗ weµ h). (2.19)

Here, u�
2, v�

2, weµ and weµh are all small quantities which represent the extent of
the deviation from the unitarity condition due to the existence of heavy neutrinos:

Σ ′
j |U�j|2 ≡ 1 − u�

2, Σ ′
j |V�j|2 ≡ v�

2, (2.20)

Σ ′
j Uej Vµj ≡ weµ, Σ ′

k Vek Uµk ≡ weµ h, (2.21)

where the primed sum is taken over only the n light neutrinos of the 2n total neu-
trinos. Their orders of magnitudes are u�

2 ∼ v�
2 ∼ O((mνD/mνR)2) and weµ ∼

weµh ∼ O(mνD/mνR), if the seesaw mechanism is assumed.7)’ ∗) Here, mνD and mνR

are, respectively, representatives of the Dirac-type and right-handed Majorana-type
masses in the neutrino mass matrix.

2.1. Isotropic part of the spectrum: N (x)

Let us first consider the isotropic part, N (x). For the purpose of surveying the
deviation from the standard model, it is suitable to examine N (x) by treating the

∗) For details, see Appendix A and §2.2 of I as an example.
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standard function n1(x) as the basis of analysis. In order to determine the relation
to the Michel parameter introduced in Eq. (1.2), we rearrange n1(x) in N (x) as
follows:

N (x) =
1
A

{
n1(x)[a+ + s (k+ c + εm k+ m) + t εm λdr]

+[n2(x) − s n1(x)] (k+ c + εm k+ m) + [n3(x) − t n1(x)] εm λdr

}
,(2.22)

where s and t are some arbitrary numbers. Here, the normalization factor A is set
equal to the following As t in order to simplify the coefficient of n1(x):

As t = a+ + s (k+ c + εm k+ m) + t εm λdr > 0. (2.23)

It is natural to restrict s and t to values satisfying the condition As t > 0.
Thus, the isotropic part, denoted by Ns t(x), takes the form

Ns t(x) = n1(x) + [n2(x) − s n1(x)] ρ(s t) + [n3(x) − t n1(x)] η(s t), (2.24)

where the two parameters ρ(s t) and η(s t) are defined as

ρ(s t) =
k+ c + εmk+ m

As t
> 0, η(s t) =

εmλdr

As t
. (2.25)

It is worthwhile to note that ρ(s t) is positive in the case of the Hamiltonian in
Eq. (2.1), because its numerator is positive, as seen from Eqs. (2.14) and (2.16) –
(2.18).

The two combinations [n2(x) − s n1(x)] and [n3(x) − t n1(x)] in Eq. (2.24) play
roles of deviation functions for Ns t(x). In I, there appear some misleading state-
ments. Specifically, the deviation functions presented there are not linearly indepen-
dent, and thus all of their coefficients cannot be determined independently.∗)

The simplest choice of s and t is (s, t) = (0, 0). In this case, the isotropic part
is expressed as follows:

N0 0(x) = n1(x) + n2(x) ρ(0 0) + n3(x) η(0 0). (2.26)

This is merely the original expression given in Eq. (2.6), with A = A0 0 = a+. It
should be noted that we have A �= 1 in principle for the Hamiltonian employed here.
Explicitly, if the right-handed charged weak current or the existence of a heavy
Majorana neutrino is assumed, we have the following expressions from Eqs. (2.14)
and (2.16), respectively:

A0 0 =
(
1 + λ2

)
> 1 for the Dirac neutrino case, (2.27)

A0 0 ≈ (
1 − ue

2 − uµ
2
)

� 1 for the Majorana neutrino case. (2.28)

∗) In I, a normalization factor is denoted by An �. A shortcut to reconstruct linearly independent

deviation functions is simply to set n = �. The presentation there can be corrected by taking

An � → An n and ρm → 0. Then, An n in I corresponds to A2n 0 in the present paper.
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The parameters ρ(0 0) and η(0 0) are related to the weak mixing constants. For
the Dirac neutrino case, they are

ρ(0 0) ≈ 1
2

(
κ2 + η2

)
> 0, (2.29)

η(0 0) = 0, (2.30)

while for the Majorana neutrino case, they are

ρ(0 0) ≈ 1
2

[
κ2

(
vµ

2 + |weµ |2
)

+ η2
(
ve

2 + |weµ h |2
)]

> 0, (2.31)

η(0 0) ≈ 1
2

λRe(weµ
∗ weµ h). (2.32)

In these expressions, only the lowest order terms are kept by choosing A0 0 ≈ 1. Note
that we can get no direct information on λ from the isotropic spectrum Ns t(x) in
the Dirac neutrino case. By contrast, in the Majorana neutrino case, the parameter
η(0 0) is proportional to λ. However, the orders of magnitude of both ρ(0 0) and η(0 0)

themselves seem to be very small, as seen from Eqs. (2.31) and (2.32).
Concerning the relation with the Michel parameter ρM , the relevant term in

Eq. (1.2) can be reproduced from the spectrum Ns t(x) of Eq. (2.24) by setting
(s, t) = (2, 0). Then, we have the following deviation function [n2(x) − 2n1(x)] and
its associated parameter ρ(2 0):

n2(x) − 2n1(x) � 2x2 (3 − 4x) , ρ(2 0) = −2
3

(
ρM − 3

4

)
. (2.33)

It should be noted that the behavior of [n2(x) − 2n1(x)] in N2 0(x) is different from
that of n2(x) � 12x2 (1 − x) in N0 0(x). This is discussed at the end of §4.

The full expression for the Michel parameterization contains another combina-
tion n3(x) ηM , which is omitted in Eq. (1.2), because n3(x) is small, due to the factor
of x0, as seen from Eqs. (2.10) and (2.13).2) There is the corresponding combination
n3(x) η(2 0) in N2 0(x). Within the framework of the weak interaction Hamiltonian in
Eq. (2.1), we have η(20) = 0 in the Dirac neutrino case, while η(20) �= 0 in the Majo-
rana neutrino case, as it is defined in Eq. (2.25). These two parameters ηM and η(2 0)

originate from different theoretical models of the weak interaction, as discussed in §4.
But phenomenologically they yield the same experimental values. Below we list the
present experimental restrictions which are derived from the averages summarized
by the Particle Data Group:2)

ρ(2 0) = −(6 ± 7) · 10−4, (2.34)
η(2 0) = 0 for the Dirac neutrino case, (2.35)
η(2 0) = (1 ± 24) · 10−3 for the Majorana neutrino case. (2.36)

These parameters are related to the weak mixing constants through the expres-
sions Eqs. (2.29) – (2.32) in the lowest-order approximation. This is because the
normalization factor A2 0 takes the following form:

A2 0 =
(
1 + λ2 + κ2 + η2

)
> 1 for the Dirac neutrino case, (2.37)
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A2 0 ≈ [
1 − ue

2 − uµ
2 + κ2

(
vµ

2 + |weµ|2
)

+ η2
(
ve

2 + |weµ h|2
)] ≈ 1

for the Majorana neutrino case. (2.38)

We point out here that the spectrum Ns t(x) with s �= 0 and/or t �= 0 is derived
from N0 0(x) by rearranging the standard function n1(x). Therefore, they should
contain the same information on the weak mixing constants. Indeed, this situation
is expressed formally by the following identity:

As t Ns t(x) = A0 0 N0 0(x), (2.39)

as seen from Eqs. (2.23) and (2.24). However, the normalization factors As t and
A0 0 themselves do not appear in the data analysis, and furthermore, the deviation
functions are different in the spectrum functions Ns t(x) and N0 0(x). In §3, we
examine the problem of obtaining the information mentioned above in the case that
the experimental data are analyzed using different spectrum functions. For this
purpose, the notation Ns t(x) is used to represent the spectrum with s �= 0 and/or
t �= 0 hereafter.

There are some useful relations among the parameters in N0 0(x) and those in
Ns t(x). The following two are obtained directly from the definitions in Eqs. (2.23)
and (2.25):

ρ(0 0) =
1(

1 − s ρ(s t) − t η(s t)
)ρ(s t), (2.40)

η(0 0) =
1(

1 − s ρ(s t) − t η(s t)
)η(s t). (2.41)

Using these relations, numerical values of ρ(0 0) and η(0 0) can be estimated from
experimental results for ρ(2 0) and η(2 0). We also have the identity∗)

(
1 + s ρ(0 0) + t η(0 0)

) (
1 − s ρ(s t) − t η(s t)

)
= 1, (2.42)

from which we can derive the inverse relations to express ρ(s t) and η(s t) in terms of
ρ(0 0) and η(0 0).

It can be shown by using these identities that the relation in Eq. (2.39) can be
expressed as follows:

Ns t(x) =
1(

1 + s ρ(0 0) + t η(0 0)
) N0 0(x). (2.43)

This implies that the spectrum function Ns t(x) and the parameters (ρ(s t), η(s t)) can
be obtained from knowledge about N0 0(x) and (ρ(0 0), η(0 0)), and vice versa.

∗) We can derive the following relations from the definitions given in Eqs. (2.23) and (2.25):

As t =
“
1 + s ρ(0 0) + t η(0 0)

”
A0 0 or A0 0 =

“
1 − s ρ(s t) − t η(s t)

”
As t.
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2.2. Anisotropic part of the spectrum: P(x)

Next, let us consider the anisotropic part, P(x), in Eq. (2.7). Here, we take
the standard function p1(x) as the basis of the analysis. In order to elucidate the
relation to the Michel parameterization, we define a common factor Bu by using the
coefficient of p2(x) as

Bu = a− + u (k− c + εmk−m), (2.44)

where u is some arbitrary number.∗) Then, the anisotropic spectrum is written as
Ps t u(x):

Ps t u(x) = ξ(s t u)
{

p1(x) +
[
p2(x) − u p1(x)

]
δ(u)

}
, (2.45)

where the parameters are defined as

ξ(s t u) =
Bu

As t
, δ(u) =

k− c + εm k−m

Bu
. (2.46)

For the simple choice (s, t, u) = (0, 0, 0), we have A0 0 = a+ and B0 = a−.
Then, the anisotropic spectrum is expressed as

P0 0 0(x) = ξ(0 0 0)
[
p1(x) + p2(x) δ(0)

]
. (2.47)

This P0 0 0(x) is identical to Eq. (2.7) if we set ξ(0 0 0) = (a−/a+).
The parameters ξ(0 0 0) and δ(0) are related to the weak mixing constants. For

the Dirac neutrino case, they are

ξ(0 0 0) =

(
1 − λ2

)
(1 + λ2)

, δ(0) ≈ 1
2

(
κ2 − η2

)
, (2.48)

while for the Majorana neutrino case, they are

ξ(0 0 0) ≈ 1 − 2λ2ve
2vµ

2 ≈ 1, δ(0) ≈ 1
2

[
κ2

(
vµ

2 + |weµ|2
) − η2

(
ve

2 + |weµ h|2
)]

.

(2.49)
Here, only the leading terms are given for the deviation from the standard model.

The Michel parameterization in Eq. (1.3) can be reproduced from Ps t u(x) by
choosing (s, t, u) = (2, 0, 6). In that case, the following correspondences are ob-
tained:

p2(x) − 6p1(x) � 6x2(3 − 4x), ξ(2 0 6) = ξM , δ(6) =
2
9

(
3
4
− δM

)
. (2.50)

The experimental results reported by the Particle Data Group2) are as follows:∣∣∣ξ(2 0 6) Pµ

∣∣∣ = 1.0027 ± 0.0079 ± 0.0030, (2.51)

δ(6) = (1.1 ± 2.7) · 10−4. (2.52)
∗) In I, a similar common factor is denoted by Bn �. The presentation there can be corrected by

taking Bn � → Bn n and δm → 0. Note that Bn n there corresponds to B2n in the present paper.
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Here, Pµ represents the longitudinal polarization of the muon which is introduced in
Eq. (1.1). The common parameter ξ(2 0 6) is related to the weak mixing constants as
follows:

ξ(2 0 6) =
1 − λ2 + 3 (κ2 − η2)

1 + λ2 + κ2 + η2
for the Dirac neutrino case, (2.53)

ξ(2 0 6) ≈ 1 + 2κ2(vµ
2 + weµ

2) − 4η2(ve
2 + weµh

2) ≈ 1
for the Majorana neutrino case. (2.54)

The parameter δ(6) can be expressed in the same form as δ(0) in Eqs. (2.48) and
(2.49) if only the leading terms are kept for the deviation from the standard model.

The parameters in Ps t u(x) and P0 0 0(x) satisfy the following identities:

ξ(0 0 0) =

[
1 − uδ(u)

]
[
1 − s ρ(s t) − t η(s t)

]ξ(s t u), (2.55)

δ(0) =
1[

1 − u δ(u)
] δ(u). (2.56)

The inverse relations are obtained by using the following identity.
(
1 + u δ(0)

) (
1 − u δ(u)

)
= 1. (2.57)

All these relations can be derived from the definitions in Eqs. (2.44) and (2.46). Also,
we can confirm the relation

Ps t u(x) =
1(

1 + s ρ(0 0) + t η(0 0)
) P0 0 0(x). (2.58)

Note that this relation is independent of u introduced in Eq. (2.44).
Finally, it is useful to note that we have κ = η if the SU(2)L × SU(2)R × U(1)

model is used, and in that case, the δ(u) parameter becomes simpler:

δ(u) = 0 for the Dirac neutrino case, (2.59)

δ(u) � η2

2
[(

vµ
2 − ve

2
)

+
(|weµ |2 − |weµ h |2

)] � 1

for the Majorana neutrino case. (2.60)

§3. Method of least squares

Here we find a sufficient condition for obtaining the same results for the weak
mixing constants when different spectrum functions are adopted in the data analysis.
Also, the method is formulated so as to include the QED radiative corrections ap-
propriately. We first concentrate on the isotropic part, Ns t(x). It is easy to extend
our treatment to the full spectrum in which the anisotropic part Ps t u(x) is taken
into consideration.
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3.1. Analysis of the isotropic part of the spectrum: N (x)

We use the method of least squares in the data analysis. The QED radiative
correction is not included for the time being. In the case that Ns t(x) is used, the
unknown parameters (ρ(s t) and η(s t)) are determined as those values at which the
following χ2

s t is minimized:

χ2
s t =

∑
i

1
σ 2

i

[
E(xi) − cs t Ns t(xi)

]2
. (3.1)

The summation over i runs over all measuring points xi. The quantity E(xi) rep-
resents an experimental datum at xi, and σi is its experimental error. The global
normalization constant cs t is introduced to adjust the theoretical values to the ex-
perimental data, so that the minimum point of χ2

s t is sought under the variation of
cs t as well as the parameters.

By requiring that χ2
s t be a minimum, a set of analytical solutions is obtained

for the parameters (cs t, cs t ρ(s t) and cs t η(s t)). They are known as the Cramers
formula for a system of linear equations,8) because these parameters appear linearly
in cs t Ns t(x). If the spectrum function N0 0(x) is adopted and χ2

0 0 is required to
have a minimum, the parameters (c0 0, c0 0 ρ(0 0) and c0 0 η(0 0)) are expressed in terms
of another set of analytical solutions. These two sets of solutions indicate that the
two global normalization constants cs t and c0 0 satisfy the relation(

cs t

c0 0

)
=

(
1 + s ρ(0 0) + t η(0 0)

)
. (3.2)

It can be confirmed further that, with this relation, the solutions for (ρ(s t), ρ(0 0))
and (η(s t), η(0 0)) are consistent with the relations in Eqs. (2.40) and (2.41), respec-
tively. For this reason, the relation in Eq. (3.2) is called the “ equivalent condition ”
hereafter.

If we combine Eq. (3.2) with Eq. (2.43), the following equality is obtained:

cs t Ns t(x) = c0 0 N0 0(x). (3.3)

This implies that the χ2-values are the same for different spectrum functions Ns t(x)
and N0 0(x):

χ2
s t = χ2

0 0. (3.4)

In summary, the values of the parameters (ρ(0 0) and η(0 0)) are determined ex-
perimentally, as those at which the χ2

0 0-value is a minimum. The consistency of
independent data analyses using N0 0(x) and Ns t(x) is guaranteed by the equivalent
condition for the global normalization constants (c0 0 and cs t). Then, χ2

s t is equal to
χ2

0 0 when their parameters satisfy the relations in Eqs. (2.40) and (2.41). However,
we note that the equivalent condition depends on a delicate balance of the global
normalization constants, c0 0 and cs t, because their difference is very slight, due to
the smallness of ρ(0 0) and η(0 0).

Now let us examine a method for taking account of the QED radiative correction
in the analysis of the spectrum. As a first step, we consider the case in which the
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data analysis is performed by assuming the standard model. Then, we attempt to
find the minimum value of the quantity

X2
sm =

∑
i

1
σ 2

i

∣∣∣E(xi) − csm [n1(xi) + f(xi)]
∣∣∣2, (3.5)

where f(x) stands for the QED radiative correction associated with the standard
function n1(x) in Eq. (2.8).9)’ ∗) Note that the only unknown parameter in X2

sm is
the global normalization constant csm.

If the effect due to the coupling constants (λ, η and κ) is considered, then the
above X2

sm is modified. In that case, the standard function n1(x) is replaced by the
spectrum function N0 0(x) or Ns t(x) in Eq. (2.24), but the QED radiative correction
f(x) is unchanged because of the consistency of the approximation. Thus, it is
appropriate to introduce the following form instead of X2

sm:

X2
s t =

∑
i

1
σ 2

i

[E(xi) − cs t Ns t(xi) − cR f(xi)]2 . (3.6)

Here, it is understood that the notation (s, t) includes the case (s = 0, t = 0).
The two new parameters cs t and cR are a little different from csm in X2

sm, because
Ns t(x) appears in place of n1(x). Note that this cR is independent of s and t. This
can be confirmed by comparing two sets of analytical solutions for the parameters
(c0 0, ρ(0 0), η(0 0), cR) and (cs t, ρ(s t), η(s t), cR). These sets are obtained by requiring
that X2

0 0 and X2
s t, respectively, are minimal.

The equivalent condition in Eq. (3.2) is derived again for the new global nor-
malization constants, c0 0 and cs t, introduced in Eq. (3.6). Then, it can be proved
under this equivalent condition that the χ2-values are the same for different spectrum
functions N0 0(x) and Ns t(x) whose parameters satisfy the relations in Eq. (2.40) for
(ρ(0 0), ρ(s t)) and the relations in Eq. (2.41) for (η(0 0), η(s t)):

X2
s t = X2

0 0. (3.7)

We now give three comments. First, we examine whether the special choice
of the spectrum function is preferable in the actual numerical analysis. For this
purpose, it is useful to estimate the x dependence of the function ∆(x) defined by

∆(x) = E(x) − csm [n1(x) + f(x)] , (3.8)

where csm is fixed such that X2
sm in Eq. (3.5) is minimal. If this ∆(x) possesses

a clear x dependence, then we may choose such a value of s that ∆(x) is roughly
proportional to the deviation function [n2(x)− s n1(x)] in Eq. (2.24). However, it is
conceivable that ∆(x) does not possess a clear x dependence, because of experimental
errors. If this is the case, then it may be preferable to adopt N0 0(x) in Eq. (2.26),

∗) The relation between our f(x) and F (x) of Arbuzov9) is

f(x) =
h
1 + (me/mµ)2

i−4

F (x) −N2 0(x).



New Parameterization in Muon Decay and the Type of Emitted Neutrino 1081

because in that case, the parameters are related to the weak mixing constants in
simpler forms. In conclusion, we propose to use X2

0 0 in the actual data analysis
because of its simplicity.

The next comment is that the precise determination of the value of X2
sm itself,

defined in Eq. (3.5), is interesting. This is because a large deviation from the standard
model is not expected, especially in the Majorana neutrino case. This is discussed
in the last paragraph of §4.

The final comment is that, in contrast to X2
s t in Eq. (3.6), the definition

Y 2
s t =

∑
i

1
σ 2

i

∣∣∣E(xi) − cs t [Ns t(xi) + f(xi)]
∣∣∣2 (3.9)

is inappropriate theoretically, because it leads to the inequality Y 2
s t �= Y 2

0 0.

3.2. Analysis of the full spectrum: D(x)

In the extended form of the parameterization, the full spectrum appearing in
Eq. (2.4) is expressed as

Ds t u(x, θ) =
[
Ns t(x) + Pµ cos θPs t u(x)

]
, (3.10)

where Ns t(x) and Ps t u(x) are given by Eqs. (2.24) and (2.45), respectively. The
method of least squares can be applied to Ds t u(x, θ) similarly to the isotropic part,
Ns t(x).

We now summarize the essential points for the case with no radiative correction.
The new χ2

s t u is defined as

χ2
s t u =

∑
i, j

1
σ 2

i j

[
E(xi, θj) − ds t Ds t u(xi, θj)

]2
, (3.11)

where xi and θj are sets of observed quantities at one measuring point. We can obtain
analytical solutions for two new parameters (ξ(s t u) and δ(u)), in addition to three old
ones (ds t, ρ(s t) and η(s t)), by requiring that χ2

s t u be minimal. The corresponding
solutions are also obtained by treating χ2

0 0 0. It should be noted that the global
normalization constant ds t here depends only on s and t, because it is determined
as a coefficient for Ns t(x) of Ds t u(x, θ) in the method of least squares. Then, it
can be verified not only that the global normalization constants satisfy an equivalent
condition similar to that in Eq. (3.2) but also that the other four parameters are
consistent with the relations in Eqs. (2.40), (2.41), (2.55) and (2.56). Due to this
equivalent condition, together with the relations in Eqs. (2.43) and (2.58), we have
the identity ds tDs t u(x, θ) = d0 0D0 0 0(x, θ), and hence the equality

χ2
s t u = χ2

0 0 0. (3.12)

In the case that the radiative QED effect is taken into consideration, we modify
χ2

s t u and define the following Z2
s t u, which satisfies both the consistency conditions

for parameters and the equality Z2
s t u = Z2

0 0 0:

Z2
s t u =

∑
i, j

1
σ 2

i j

[
E(xi, θj) − ds t Ds t u(xi, θj) − dR F (xi, θj)

]2
, (3.13)
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where the new parameter dR corresponds to cR in Eq. (3.6) and

F (x, θ) =
[
f(x) + Pµ cos θ g(x)

]
. (3.14)

Here, g(x) represents the QED radiative correction associated with the anisotropic
standard function p1(x) in Eq. (2.11).9)’ ∗)

Corresponding to X2
sm for the isotropic part of the standard model, the following

Z2
sm with the global normalization constant dsm is defined for the full spectrum:

Z2
sm =

∑
i, j

1
σ 2

i j

∣∣∣E(xi, θj) − dsm [Dsm(xi, θj) + F (xi, θj)]
∣∣∣2, (3.15)

where
Dsm(x, θ) =

[
n1(x) + Pµ cos θ p1(x)

]
. (3.16)

It is interesting to compare the minima of Z2
sm and Z2

0 0 0 in order to directly deter-
mine the extent of the departure from the standard model.

§4. Discussion

Let us consider a possible method for determining whether a neutrino is of Dirac
or Majorana type. This is facilitated by observing the η(s t) parameter, which is zero
or nonzero, depending on the Dirac or Majorana neutrino within the frame of the
gauge theory, as seen from Eqs. (2.30) and (2.32).∗∗) The Michel parameter ηM has
been widely used as a measure to quantify the deviation from the standard model.
It corresponds to η(2 0) phenomenologically, as mentioned in the paragraph including
Eq. (2.36). However, the η(s t) term is defined for the Majorana neutrino case within
the framework of gauge theory, while the ηM term comes from the interference be-
tween the (V ± A) and (S ± P ) (or T ) forms, even in the massless Dirac neutrino
case.2) In any case, determination of this η parameter reveals the deviation from the
standard model.

It is well known that measuring the η parameter is very difficult experimentally.
One reason is that the contribution of the relevant deviation function, n3(x), is small,
because it is proportional to the small quantity through x0, as shown in Eq. (2.13).
We can avoid this problem by considering the τ -decay

τ+ → µ+ + νµ + ντ . (4.1)

All formula in the previous sections can be applied to this τ -decay through the
replacement of both (mµ → mτ ) and (me → mµ). Then, the value x0 = me/W �

∗) The relation between our g(x) and G(x) of Arbuzov9) is

g(x) = −
h
1 + (me/mµ)2

i−4

G(x) −P2 0(x).

∗∗) This difference is independent of the choice of the normalization factor A. It should be noted

that there is some misleading discussion in I regarding this point. In particular, it is not the case

that there is some difference between the Dirac and Majorana cases by choosing A.
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0.01 is shifted to x0(τ) = mµ/Wτ � 0.12, where Wτ = (m2
τ + m2

µ)/2mτ . The second
reason for the difficulty in detecting the η(s t) parameter is its smallness within gauge
theory, as seen from Eqs. (2.32) and (2.21). Its rough estimate was discussed in
§4.2 of I. We conclude that muon decay cannot be used to discriminate between the
Majorana and Dirac neutrino cases in actual experiments.

Next, let us examine the order of magnitude of the normalization factor A.
In the conventional model used to analyze the experimental results, it is assumed
that A = A2 0 = 1.10) However, in our model for the Dirac neutrino, as we know
A0 0 =

(
1 + λ2

)
> 1 from Eq. (2.27), we need some information concerning λ2. We

may conclude that λ2 < O(10−3) from the data given in Eqs. (2.51) – (2.53) and
(2.34). The information on λ2 can be directly extracted from the experimental results
on the longitudinal polarization of the emitted positron. We have the following
expression for this polarization in the direction perpendicular to the muon spin
polarization, namely θ = π/2:

PL(x, θ = π/2) = ξ(0 0 0) xp [ q1(x) + q2(x) δ(0) ]
[ n1(x) + n2(x) ρ(0 0) + n3(x) η(0 0) ]

, (4.2)

which is obtained from Eq. (A.3) in Appendix A. In the limit of the maximum of
x, x → xmax � 1, the ratio [xp q1(x)/n1(x)] approaches to (xp/x) � 1, while all
others, n2(x), n3(x) and q2(x), vanish. Then, we have PL(x, θ = π/2) → ξ(0 0 0) ≈
(1−2λ2), as seen from Eq. (2.48). Thus, the restriction λ2 < 2·10−2 is obtained from
the present average value on this polarization.2) In the Majorana neutrino case, at
present, there is no definite information, although it can be imagined from Eq. (2.28)
that the deviation from A0 0 = 1 is very small.

Finally, we comment on the data for the Michel parameter ρM . The mean value
of ρ(2 0) obtained from ρM is ρ(2 0) = −6 · 10−4, as shown in Eq. (2.34). This mean
value is negative, although it could be positive, within the experimental uncertainty.
Theoretically, it is predicted to be positive in the case of the Hamiltonian given in
Eq. (2.1), as seen from Eq. (2.29) or (2.31) and (2.40). There is a possibility that
this difference results from some ambiguity in the data analysis. This is because the
consistency of the data analysis depends delicately on the equivalent condition in
Eq. (3.2) and the method of treating the QED radiative correction, as mentioned in
§3. Under these circumstances, it is of interest to compare experimental results for
ρ(2 0) and ρ(0 0), which can be determined by using N2 0(x) and N0 0(x), respectively.
These parameters should satisfy the relation given in Eq. (2.40) and have the same
signature. In connection to this, the evaluation of X2

0 0 and X2
2 0 is important,

because, according to the theory, they are equal. It would also be interesting to
compare them with X2

sm in Eq. (3.5), because a large deviation from the standard
model is not expected, especially for the Majorana neutrino case.

Appendix A
Polarization of the Positron

Because the parameters are defined here in somewhat different forms than in I,
we list expressions for the polarization of an emitted positron.
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The differential decay rate is expressed as

d2Γ

dx d cos θ
=

1
2
ΓW AD(x, θ)

[
1 + �Pe(x, θ) · ζ̂

]
, (A.1)

where the vector �Pe(x, θ) is the polarization vector of e+, and ζ̂ is the directional
vector of the measurement of the e+ spin polarization. The decay plane is defined
by the direction of the momentum (�pe) of e+ and the muon polarization vector ( �Pµ).

The three components of the e+ spin polarization vector are defined as2)

�Pe(x, θ) = PL(x, θ)p̂e + PT1(x, θ)
(p̂e × �Pµ) × p̂e

|(p̂e × �Pµ) × p̂e|
+ PT2(x, θ)

p̂e × �Pµ

|p̂e × �Pµ|
. (A.2)

Explicit expressions for PL(x, θ), PT1(x, θ) and PT2(x, θ) are presented here in terms
of the parameters defined in §2 of the present paper. For simplicity, they are listed
only in the simple form with both the normalization factor A0 0 and the common
factor B0. Also, the radiative corrections are not included here.9)

A.1. Longitudinal polarization: PL(x, θ)

It is convenient to separate the isotropic and anisotropic distributions of e+ with
respect to the muon polarization vector �Pµ, namely,

PL(x, θ) =
Q(x) + Pµ cos θ S(x)

D(x, θ)
, (A.3)

where the denominator D(x, θ) is defined from Eq. (3.10) as follows:

D(x, θ) =
1
xp

D0 0 0(x, θ) =
1
xp

[N0 0(x) + Pµ cos θP0 0 0(x)]. (A.4)

The isotropic part, Q(x), and anisotropic part, S(x), of the longitudinal polar-
ization are expressed as

Q(x) = ξ(0 0 0)
[
q1(x) + q2(x) δ(0)

]
, (A.5)

S(x) =
[
s1(x) + s2(x) ρ(0 0) + s3(x) η(0 0)

]
, (A.6)

where

q1(x) = xp (3 − 2x − r2
0), (A.7)

q2(x) = 12xp (1 − x), (A.8)
s1(x) = (−x + 2x2 − x2

0), (A.9)
s2(x) = 12x(1 − x), (A.10)
s3(x) = −2x0 (1 − x). (A.11)

The parameters (ξ(0 0 0) and δ(0)) in Q(x) are defined in Eq. (2.46) for the case of
P(x), while the parameters (ρ(0 0) and η(0 0)) in S(x) are defined in Eq. (2.25) for the
case of N (x).
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A.2. Transverse polarization within the decay plane: PT1(x, θ)

The x dependent part, R(x), of PT1(x, θ) is defined as

PT1(x, θ) =
Pµ sin θ R(x)

D(x, θ)
, (A.12)

with

R(x) =
[
r1(x) (1 − 12 ρ(0 0)) + r2(x) η(0 0)

]
, (A.13)

where

r1(x) = −x0 (1 − x), (A.14)
r2(x) = −2 (x − x2

0). (A.15)

Note that the small quantity x0 appears in r1(x), which represents the prediction
obtained from the standard model. The quantity, η(0 0), which indicates the existence
of the Majorana neutrino, is associated with the larger deviation function, r2(x).

A.3. Transverse polarization perpendicular to the decay plane: PT2(x, θ)

The x dependent part, T (x), of PT2(x, θ) is defined as

PT2(x, θ) =
Pµ sin θ T (x)

D(x, θ)
, (A.16)

where

T (x) = 2xp

(
1 − r2

0

)
η

(0 0)
im . (A.17)

Here, the new parameter η
(0 0)
im is defined as follows:3)

η
(0 0)
im = εm

(
λ

A(0 0)

)
Im(weµ

∗ weµ h). (A.18)

A non-zero value of T (x) implies the existence of a non-zero Majorana CP vi-
olating phase in our model. There is no corresponding term in either the standard
model or our model for the Dirac neutrino.
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