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Neutrino pair emission from excited atoms
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We explore a possibility of measuring the absolute magnitude and the nature (Majorana vs Dirac) of
neutrino masses, by using a novel process of neutrino pair emission from metastable excited atoms.
Except lepton number nonconserving processes, the neutrino pair (»#) emission is the unique process to
directly distinguish the Majorana neutrino from the Dirac neutrino, using the interference effect of
identical fermions. The small energy difference between atomic levels makes it easier to measure small
neutrino masses as indicated by neutrino oscillation experiments. The crucial point is how to enhance the
rate of pair emission without enhancing the radiative decay. We discuss two particular cases; (1) laser
irradiated pair emission from metastable atoms, and (2) microwave irradiated emission from circular
Rydberg states. A new mechanism of the parametric amplification to enhance the neutrino pair emission is
pointed out when Rydberg atoms are irradiated by microwave, while the radiative process may be
inhibited by the cavity QED effect. A great variety of measurable neutrino parameters and a variety of

experimental methods make this investigation attractive.

DOI: 10.1103/PhysRevD.75.113007

L. INTRODUCTION

The nature of neutrino masses, along with their precise
values and their mixing parameters which appear in the
weak interaction, is of fundamental importance to explore
physics far beyond the standard model. In particular,
whether the neutrino belongs to the special class of neutral
particles described by the Majorana equation, or to the
usual Dirac particle we are so familiar with, is a central
issue of great interest.

In the present work we propose a novel approach to
answer this important issue, the Majorana vs the Dirac
particle, and suggest new experimental methods to do
this. Moreover, we would like to suggest a method to
simultaneously determine absolute values of neutrino
masses in the same experiment.

The neutrino masses indicated by recent oscillation ex-
periments suggest, but do not determine, the hierarchical
mass pattern. One tends to take a view that two mass scales
suggested by the atmospheric neutrino and the solar neu-
trino oscillation is close to two heavier neutrino masses,
with a small correction from the lightest neutrino;

m3 ~ 50 meV, m, ~ 10 meV, m; K m,. (1)

This is the case of the normal hierarchy. On the other hand,
in the case of the inverted hierarchy one has the mass
relation; m3 = my ~ 50 meV, m3 — m3 ~ (10 meV)?,
m; <K m,. How small the lightest mass m; is and how
much the heaviest neutrino of mass m; is mixed in the
flavor state v, are both important questions unanswered by
neutrino oscillation experiments so far. It is desirable for a
single, well-organized experiment to be able to address all
these questions. Indeed, our proposal directly attempts to
answer all these problems with an extra bonus; if the
method works ideally, one may hope to embark on the
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neutrino mass spectroscopy, along with the determination
of the Majorana vs Dirac particle.

Available energy difference between atomic levels is
closest to small neutrino masses indicated by neutrino
oscillation. Other energy scales are much larger; for in-
stance the tritium beta endpoint ~18.6 keV. Among
others, Rydberg states [1] of a large principal quantum
number n have energy difference to nearest levels of order,

AE~27 meVAn<i> ' @
10

This makes it urgent to seriously consider atomic experi-
ments for the neutrino mass measurement, if the rate lies
within the experimental reach. The pair emission rate
scales with G%E> with the energy E, the constant being
the Fermi coupling Gy ~ 107> GeV 2, hence it is usually
impossible to have a reasonable rate, unless some novel
mechanism of enhancement is proposed.

In the present work we discuss two different types of
enhanced atomic transitions; y + I* — I'"* + v,v;, where
v is either a laser photon or a microwave photon. The
initial atomic state I* is a metastable excited state of a
long lifetime, for instance >1 sec, while the final state I**
has a strong El rate to a lower level such as the ground
state. The experimental signal would be a detection of
transition to the level I** experimentally designed vacant
initially. For unambiguous identification of a weak inter-
action process such as this neutrino pair emission it is
desirable to measure a parity violating quantity such as
the rate difference between initial different circular polar-
izations. In the first case of laser irradiated pair emission,
one uses a resonance effect for enhancement. Our second,
and a more ambitious proposal is to utilize an inherent
instability and its associated enhanced decay of neutrino
pair emission when Rydberg states are irradiated by a
strong microwave field, at the same time using the princi-
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ple of inhibition of ordinary radiative decay in a microwave
cavity, a cavity QED effect [2].

The laser irradiated pair emission, perhaps using a more
conventional experimental technique, might be the shortest
route towards establishing the largest mass m; and the
distinction of Majorana and Dirac neutrino. The Rydberg
atom may lead to a more complete neutrino spectroscopy,
including a precision determination of smaller masses and
mixing angles.

To the best of our knowledge the neutrino pair emission
from atomic excited states, either spontaneous or photon
initiated, has not been observed so far, or even not dis-
cussed extensively in the literature, presumably due to a
clear lack of interest. We wish to point out here that the
atomic pair emission is ideal for a precision neutrino
spectroscopy.

The rest of the paper is organized as follows.

In Sec. I we describe in detail how to distinguish the
Majorana and the Dirac neutrinos. Our approach uses the
2-component formalism for both cases of the Majorana and
the Dirac fields. Neutrinos that participate in the standard
weak interaction of the SU(3) X SU(2) X U(1) gauge the-
ory are described by chirally projected 2-component spin-
ors. We find it most unambiguous and straightforward to
use the 2-component spinor both for neutrinos and elec-
trons under the nuclear Coulomb field, in order to clarify
and unambiguously identify the true nature of massive
Majorana neutrino. This is done using a representation of
4 X 4 gamma matrices as given in Appendix A, which is
not the most popular one in the literature, but is explained
in many textbooks such as [3]. A comparison of the 2- and
the 4-component approaches is also given in Ref. [3].

The most popular approach uses the 4-component spinor
i with the Majorana condition ¢ = i, which essentially
reduces the 4-component ¢ to the 2-component spinor,
@ ~ ¢ + . A great merit of the 2-component formalism
is that it uses independent variables alone. On the other
hand, the 4-component formalism uses redundant fields
constrained by the Majorana condition. We prefer to use
independent components alone since the neutrino that
appears in the usual weak interaction needs two compo-
nents ¢ alone. In our 2-component approach it is made
evident below that the distinction of the massive Majorana
and the Dirac cases occurs only via the interference term of
two identical particles present in the Majorana case.

We then present the pair v¥ emission amplitude and
demonstrate how the distinction arises in the two cases.
The other place where the Majorana nature arises might be
in lepton number nonconserving processes such as the
neutrinoless double beta decay. But in the case of lepton
number nonconservation there can be no proof that the
Majorana neutrino is directly involved, since there might
be another source of lepton number nonconservation..

In Sec. IT we work out kinematical factors of the pair
emission from excited atoms. In Sec. III we discuss one of
the enhanced processes; laser irradiated pair emission.
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How the threshold behavior of photon irradiated pair emis-
sion differs in the Majorana and the Dirac neutrinos is
described in detail. We then numerically estimate the rate
for this process assuming a standard laser flux of commer-
cially available frequency resolution. We shall further
illustrate how to determine neutrino parameters including
3 mass values and the angle 6,5 [4] if the proposed experi-
ment becomes possible.

In Sec. IV an entirely new process of pair emission from
circular Rydberg atoms is discussed. Both the standard
multiphoton picture and more general effect of the para-
metric amplification is described. The enhancement factor
of the microwave irradiation is interpreted in the multi-
photon picture as the existence of a great many varieties of
paths of stimulated photon emission that bridge between
the initial and the final states of energy difference of order
of the sum of the mass of two emitted neutrinos. The
multiphoton process corresponds to the narrow band region
of the parametric resonance. What is more interesting is the
wide band region of the parametric amplification which is
missing in the multiphoton picture, and one may expect an
even larger, exponential growth of the rate. We discuss the
unitarity bound on the pair emission rate in the wide band
region.

Our basic assumption throughout this paper is that the
standard electroweak theory correctly describes the neu-
trino interaction, while their small masses, either of the
Majorana or of the Dirac type, are generated at a much
higher energy scale than the electroweak symmetry break-
ing. Thus, the weak current associated with neutrinos is
always taken of the V — A form. We warn that introduction
of the V + A current may drastically change the result
presented here.

Throughout this paper we use the natural unit of # = 1
and ¢ = 1,and @ ~ 1/137 and a*m,/2 ~ 13.6 V.

II. HOW TO DISTINGUISH THE MAJORANA
NEUTRINO FROM THE DIRAC NEUTRINO

The most commonly assumed method of observing the
Majorana nature of neutrino masses is to discover the
lepton number nonconservation, as typically exemplified
by the neutrinoless double beta decay. But, this is not the
unique way of detection. Another, and a more direct
method is to exploit the identical particle effect of
Majorana particles [5], since a Majorana particle is iden-
tical to its antiparticle.

In the nonrelativistic regime where the distinction of
Majorana vs Dirac particles is expected to appear, plane-
wave solutions for the Majorana and the Dirac particles
might appear different, and this difference might show up
in many places if momentum of neutrinos is smaller than
their masses. We need a systematic way to handle the most
general cases. This is the purpose of the present section. In
the end we shall show that there exists a representation
demonstrating wave functions common to both the
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Majorana and the Dirac cases. All other representations
should give equivalent results to this one.

Since a convenient account of the Majorana field, in
particular, of the 2-component formalism, is missing [3],
we explain in detail and give fundamental formulas related
to Majorana neutrinos, in particular an explicit plane-wave
solution for the massive Majorana particle. Our approach is
based on the 2-component spinor, and unlike many other
works, in no place do we adopt the 4-component descrip-
tion. This way we believe that a possible complication due
to a constrained fermion field of 4-component description
is avoided. We shall prove that the interference term of the
antisymmetrized wave function of identical fermions is the
only source of distinction of the Majorana and the Dirac
neutrinos. A great merit of our 2-component approach is
that this simple result is an automatic consequence of our
formalism.

Fine details are relegated to Appendix A, some of which
should be useful in different contexts.

A. Majorana equation

Lorentz invariance allows electrically neutral particles
to be described by the 2-component spinor equation, as
pointed out a long time ago by Majorana. The Majorana
equation for free neutrinos is

(i, —io - 6)90 = imo,¢", 3)

with m the neutrino mass. The 2-component spinor ¢
belongs to an irreducible representation of the Lorentz
group, unlike the reducible representation of the 4-
component Dirac spinor. The most salient feature of this
equation is that it contains ¢ as well as its conjugate ¢*,
thus the lepton number is violated, or more properly, one
cannot define the lepton number. Unless the lepton number
is violated in other places of interaction, the rate of lepton
number violating processes is proportional to the square of
the neutrino mass, actually some weighted average of
neutrino masses squared.
The plane-wave solution to Eq. (3) is given by

=)o) o

(2) - EI’_TM(—WZ)(ZI ) 5)

Consistent quantization as discussed in Appendix A leads
to the normalized operator form of the plane-wave solution
written in terms of the helicity eigenstate of eigenvalue #,

@5.n(x) = c(p, he™ P u(p, h)

E +h
2 2P iyt (p. ),

+ et (p,—her
E,—hp
(6)
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st | Ep=hp ( p+hp

The helicity eigenstate wave function satisfies (7 -
p/p)u(p, h) = hu(p, h). Quantization of the Majorana
field as explained in Appendix A gives the interpretation
of ¢(p, h) and ¢ (p, —h) = (c¢(p, h))' as annihilation and
creation operators of Majorana particles of momentum p
and helicity A.

B. Weak interaction of neutrino

We only consider weak interaction of neutrinos with
electron, since our subject is the atomic weak process,
hence we ignore heavier charged leptons and quarks.

The Majorana neutrino field appears only in the form of
the projected 2-component spinor, ¢ = (1 — ys)¢/2 in all
weak processes. We shall also write down the electron field
operator decomposed into the 2-component form, which
must be done using the same representation of y matrices
as done for the neutrino.

It is convenient to use the Fierz transformed 4-Fermi
form including both charged current (CC) and neutral
current (NC) interactions;

Gr

Gy
7y (1 — y5)reey?(l — ys)e — ~L S iy (1 —
7 Yol = ys)veey®(1 — ys) 2\/52 Yall = 5)
X vie(y(1 — 4sin’0y — ys))e, (8)

where sin?6y, = 0.231 experimentally. The relative sign of
CC and NC terms becomes important later.

Care must be taken of the effect of the nuclear Coulomb
field on electrons. Fortunately, to orders of « and 1/m,, the
result is simple since (E — m, — V)/m, = O[a?] terms
can be neglected. The result of the nonrelativistic limit is
summarized as

2\/§GF X [(v;r veele + VI(_J)'Ve cetae)
1 ] >
- 52(1}? v,»ef|:1 - 4sin26'W(1 + mie& . V)}e
1

1 - -
+ V;r&vi . eT[& + 4sin’0y — (—iV — 7 X V)}e>:|.
m

e

9)
This is rearranged to
Hy = &Zﬂj?. j*=viovw, (10)
ijJij,a ij i 7
o it O g
J§0 =4e"(ULU,; 7(1 4sin“6y,)
. 20 N
+2i8;; W&.v>e, (1)
me
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e _ a4 y 1
Jijk = de'l oy | UL U, — 5517

- 25,-jsin20W (

—iV - ¢ X V)k>e 1)

me

with o = (1, 7).

C. Dirac neutrino and comparison with Majorana
neutrino

The relation to the familiar 4-component Dirac equation
is explained as follows. Using a representation of the
Clifford algebra that diagonalizes ys (its explicit form is
given in Appendix A), the Dirac equation is decomposed
into two equations for two independent 2-spinors, ¢ and y;

(ig, +io - 6)){ = meo.
(13)

Thus, the identification by y = io,¢" in the Dirac equa-
tion gives the Majorana equation, Eq. (3).

Physical content of these two equations appears differ-
ent; only 2 helicity states exist for the Majorana field, a
particle being identical to its antiparticle, unlike the dis-
tinguishable particle and antiparticle for the Dirac case.
Whether the neutrino as observed in the V — A weak
interaction belongs to the Majorana case or the Dirac
case is the unsettled question facing fundamental physics.

It is important to theoretically compare the chirality-
projected Dirac field ¢, = (1 — ys)iy/2 to the Majorana
field. The relevant 2-component operator corresponding to

(i9, — id - V)g = my,

the momentum eigenstate o ¢~ *Ep/ TP jg
lpD = b(ﬁr h)e—ip'xu(ﬁ’ h)
E, + hp

+d'(p, —h)e'r (—io)u*(p, h). (14)

E,— hp

Here u(p, h) is given by Eq. (7). The antiparticle creation
operator d'(p, h) appears here, which is distinct from the
particle creation bt (p, h).

Comparison of the Majorana solution, Egs. (6) and (7)
and the projected Dirac solution, Eq. (14) demonstrates the
equivalence of the two wave functions, the difference being
the distinction of the Majorana particle ¢t and the Dirac
antiparticle d' creation. Their distinction appears only via
the identical particle effect of two Majorana fermions, an
extra term containing cg c;r = —c;fc;r. The unique process
to distinguish the massive Majorana from the massive
Dirac neutrino is thus the pair emission v, in which the
antisymmetrized wave function appears only for Majorana
neutrinos. We shall later show that this distinction too
disappears in the high energy limit of E, > m. On the
other hand, neither a single nor a pair vv (not ¥) emission
can tell their distinction even for nonrelativistic massive
neutrinos, although they may be able to determine the
absolute mass of neutrinos. In this sense the double beta
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decay of two accompanying neutrinos v, v, is useless for
distinction of the Majorana and the Dirac neutrino. There
are thus only two experimental ways to verify the
Majorana nature of neutrinos; the other indirect method
is to verify the lepton number nonconservation such as in
the neutrinoless double beta decay.

D. Pair emission

The idea of using the decay of unstable elementary
particles to verify the Majorana nature of neutrinos via
identical particle effects is not new; for instance, see [5,6].
The problem of this approach is a huge disparity of energy
scales; in both cases of the rare K-meson decay K — 7 +
v;v; [5] and the muon decay u* — e*v,p, [6], the mass
difference is much larger than anticipated neutrino masses,
and even if events of this process are accumulated statis-
tically, there is no sensible way to precisely determine the
neutrino mass.

On the other hand, the atomic energy difference is closer
to the neutrino mass scale;

1
AE,, . ~13.6 eV X (-2 - —2> (15)
noom

which reduces to 27 meVAn/(n/10)* for |n, — n,| ~
n >> 1 for Rydberg states.

Let us first discuss the neutrino pair v,7; emission of
Dirac particles. Note that the antiparticle notation 7; is
necessary only for the Dirac case. The Dirac pair emission
% bY(p,, hy)dt (), hy) is governed by ¢/P1 7% times the
current matrix element,

. > |[E, + hp R
Jp(Pihy, poha) = — ﬁu*(m, —h,)
X o%iou*(py, hy). (16)

The pair emission rate contains a neutrino current product;

1 o p
(T = —(1+ n22)(1 + n L) 1 — 1, P2
isGp) 16( 2E2 IE1 I 2 s

X 0'“(1 - pl)&ﬂ, (17)
P1

with 62 = (1, — ).

The neutrino pair current given above is to be multiplied
by the electron current product. After this multiplication,
the helicity summed quantity for the Dirac case is
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LPUP Pi" P>
i~ j |2—7<< )ﬂ]")”(l— )
hth P E\E, )" E\E,
.r
E\E,
D D X
-2 ﬂ+& 0( e)-[-_|_2p1 p2
El E2 1E2

S3jeGOt + 2(19l Q) R X sj) (18)
E,

The last two quantities in proportion to imaginary parts of

the current product may contain CP-odd effects.

Let us next discuss the Majorana pair emission. The
Majorana pair emission operator, ct(p,, hy)et(py, hy),
gives a matrix element of two antisymmetrized wave func-
tions due to the anticommutation of the Majorana field.
The neutrino current for the pair emission is thus e/(?1772)%
times

/ hapy &
JM(plhI’ 2h2) Ez+—h§zu (P1,h1)

X o®oyu*(py, —hy)

JEythpr s,
+i [t (B, —h
l E — hlpl” (P2 2)
X O'QO'QM*(I-;I,I’ZI). (19)

To derive the rate, one multiplies the electron current j¢
and takes its square. After a little algebra, one finds for the
relevant quantity of the neutrino part,

1 -
Ui P01+ 22 xaf 1 — 0,y P2
16 El E2 ) 2)

><0'<1 o ) 58+ (1 =2) (20)

JGat =

P

nmpmy )
+ tr({1 —h
16E, E, r( g P2 )

(1—h1

The last two terms of Eq. (21) are the interference terms
proper to identical fermions.

It is evident that without the interference terms o
m;m,/(E,E,) in (21), the Dirac and the Majorana emission
rates are identical, by considering an extra factor 1/2 for
the Majorana case, which is necessary after the phase space
integration because the same configuration of identical
particles are counted twice. Hereafter we divide the
Majorana contribution by 2, anticipating this overcounting
beforehand.

The helicity summed interference term thus becomes

)0"8 + (1 < 2). (21)

(GO (22)

11782
2E,E,
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Hence the current product in the rate for the Majorana
emission is

2 — o t_ Ze. (Feyt
hZhIJM il %I/u JP+ 2E E, 2 Ge(o)t — 7 - ).
2 2

(23)

The interference term is CP even. Hence the CP violating
effect is identical in the Dirac and the Majorana cases, for
the neutrino pair emission.

As an illustration, let us work out the current product by
neglecting 1/m, terms and taking sin’6y, = 1/4. We call
this the leading approximation of 1/m, expansion. The
spin and the orbital part of the electron current is separated
as

Jo = ass’aif(ﬁl + ﬁz)C,(?),

o (24)
= (s'lals)ais(P1 + ey,
aif(py + Py) = (fle”PrPIF|), (25)
0 i o
cgj) =U,U,. c; W =U,U,; %51‘]'- (26)

Furthermore, we consider the spin averaged rate such that
< ofe
5 Z] k(] i
ss'
1 e e\t —
B ZJ 0 ( o)
ss’

The result of the spin average for the Dirac and the
Majorana cases is

—ZZ lip - PP =

t=6yla;s(py + 132)|2|C(S)|2

la;r(py + 1’92)|2|C(O)|2

lais (B + PP 5 (( p1 p2>|0$)|2

ss’ hihy E E
+ <3 pl p2>| (s)|2
EE,
P1 (s)]2
+2 Rej* X 3
(£ B)wef <aFier),

(27)

—ZZUM JP =

ss’ hihy

ZZI]D JP

ss’ hihy
o My

3 (3)2 0)2 28
2E1E2(|C”| ;7). (28)

= —la;/(p1 + po)l

The long wavelength approximation for the neutrino
makes this formula much simpler, allowing the replace-
ment

laip(py + Po)I* = [(fle” PHPIT 2 — 1. (29)

This is valid if the wavelength of the neutrino A, >
atomic size, or p, < Zam,/n?. Since our main interest
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is in the region of the neutrino mass, this means, with m, =
pV’

Zam,

Z
m, <K ~ 3.7 keV —. (30)
n

This relation holds in the following discussion for laser
irradiated process, but may not for pair emission from
Rydberg atoms. The condition for the long wavelength
approximation is significantly modified for Rydberg
atoms.

II1. KINEMATICS OF PAIR DECAY

A. What can be measured from the pair decay

A merit of the process of neutrino pair emission from
excited atoms is a great variety of measurable quantities
related to the neutrino mass parameter. The neutrino pair
v;v; can be any combination ij of mass eigenstates, as is
clear from the coexistence of the charged and the neutral
current interaction. From the energy threshold position one
can determine a combination of the neutrino mass m; +
m , while the strength of the rate gives the mixing parame-
ter in the form |U};U,;|. Since any pair i (altogether 6
channels) is conceivable, there is a great many combina-
tions. This is why we phrased our experimental approach
as the Mneutrino spectroscopy. The situation is quite dif-
ferent from the neutrinoless double beta decay in which
one concentrates only on a combination of parameters
I>;U,;U,im?|, which however attempts to discover the
important issue of lepton number violation.

Ideally, one can determine all masses m; with a bonus of
experimental redundancy. In particular, we would like to
emphasize that this is the first opportunity to probe the
smallest mass m,. Furthermore, we may explore a possibly
very small mixing factor |U 3|, which indicates how much
the heaviest neutrino is mixed in the flavor v,. Both are
important since other experimental methods may have no
good handle on these quantities.

B. Phase space factor
When the pair emission occurs between 2 levels of

energy difference A, the rate is given by the phase space
factor of 2 massive neutrinos v;v;. The rate is

dq\dq,

Sy O+ By = )

rP(a) = 8G3

1
X EZ > leijimp - i1 (€29)

ss' hihy

The constant ¢;;’s are different, depending on whether the
electron transition involves spin-flip (F) or no flip (NF).
They are in the leading 1/m, approximation,
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A & 5
=) =ULU., — 5 (B)

€= (32)
Cij = Cﬁ?) = U, U,, (NF),

©p 3 Op _
izj‘lcijl = Z; lZi‘|Cij | = 1. (33)

The kinematical factor is defined, when the matrix element
is ignored, as

d3q d3q

ff,l)(A) = (ZIT)SZS(EI +E, — A)
1 A—m;

=33 dE\E\(A — E))

X [(E2 = m2)(A — B2 — md)]2 (34)

Near the threshold A =~ m; + m;

@) = s mm A = = m (39
Note that the distinction of Majorana and Dirac particles
appears only when i = j, since with { # j two neutrinos
have different masses and are not identical particles.

For illustration we shall give the rate near the threshold
in the leading approximation of 1/m,, further suppressing
the correlation of electron transition amplitude with neu-
trino momenta,

G2
PHA) = ZE 1 Pomm) (8 = mi = ), (36

G? .
TP8) = 55 ey 1P+ 31 ) mm ) (8 = my = m, )2

(37)

IV. LASER IRRADIATED PAIR DECAY

The weak rate scales with the available energy as E°.
This means that for a small available energy the rate is very
small. For the case of the neutrino pair emission from
excited atoms, the phase space factor is

GE®
1573

which should be multiplied by the matrix element squared.
One clearly needs some enhancement mechanism even to
hope for detectability of the neutrino pair emission. We
shall discuss in this section laser irradiated pair emission
using a resonance effect.

Let us first estimate very crudely how much enhance-
ment may be expected for resonant processes. Suppose that
the neutrino pair emission from a metastable atom of life-
time 1/7 is triggered by laser irradiation of flux Fy. The
rate for photon absorption is oF, with o the photo-

E\5
~33%x 1073 s_l(e—v> , (38)
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absorption cross section, and this irradiation is effective for
the duration of the lifetime. Putting these factors together,
one might naively expect a laser irradiated rate of order,
oFyl',;/v, with T',; the rate of order (38).

Another important factor is the energy resolution Aw of
the laser. Convolution of the laser spectral function with
the Breit-Wigner resonance function of the natural width y
leads to a factor of order

w% 10w, @y 157!

lev vy~

= 1.5 X 10*

vAw Aw (39)

with w( the laser central frequency. It was assumed that
Aw > 7y, which is usually valid. We shall take a standard
laser flux of order

W -2
Fy= DM~ 6.2 % 102 cm 2 sec™!
eV
~ 1.6 X 107* (eV)?, 40)

and the photo-absorption cross section of order nm?. The
laser beam power P is related to the number flux Fjy by P =
woFy, with @y = hX the laser frequency.

This leads to a typical laser irradiated rate of order

2 —
GFE%5 wooF % 018 ¢ 1s! 0'2 E \5
157 Awy v nm*\l eV

w P
X (10*9 ﬁ) T— (41)

In the following we shall give a more concrete estimate for
a particular process of laser irradiated pair emission.

We consider [7] laser irradiated neutrino pair emission
from metastable ions or atoms |I*),

y+I'—=I"+ v 42)

i
where the final state |/**) is a short-lived excited state, as
depicted in Fig. 1 [8]. Detection of |I**), presumably via
radiative decay into the ground state, gives a signature of
this weak process. A measurement of parity violating
quantity is highly desirable for the background rejection.

ok

I)

FIG. 1. Atomic level structure and laser irradiated neutrino
pair emission.
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The intermediate state |I™) is chosen to lie energetically
below the initial state |/*) by an amount of the paired

>

neutrino energy E; + E; with E; = /p? + m?. The laser

frequency is tuned to the next step of radiative transition
from |I") to the final state |I™*). The Breit-Wigner reso-
nance factor

1
(E. = E, — E; — E;)* + y*/4
1

B (E.o — E, — @) + y?/4 43)

with the energy conservation E, + w = E,. + E; + E s
gives a large enhancement at the threshold E; + E; =
m; + mj, if

E,,%E*—m,»—mj, w%E**—E*vLm,--i-mj.

(44)

Thus the laser initiated pair emission has the threshold at
the laser energy of

wp = Ewe — E. +m; +m;. (45)

The threshold location wy, is expected to be measured with
a good precision of the laser frequency.

The initial state |7*) must be a metastable excited state,
for instance O[2m5] above another state |[I*). The inter-
mediate state |I") can be either a ground state, or better,
another metastable state. The width factor given by y?> =
¥2 + 2 is a sum of the initial and the intermediate state
contributions. We assume that both of these widths are of
order 1 sec™! or smaller. There are many candidate atoms
or ions of this kind. Another important assumption is that
we prepare depletion of the intermediate state |I™), since
the laser excitation of this state to |I**) is the crucial
signature of the pair emission process.

To lowest order of the weak interaction, the rate for the
pair emission v;»; of mass eigenstates when a laser of flux
F(w) is irradiated, is given by

8GZ.e w|(I™|x]1")|?

MD(, _ A
[l — 8,7+ /a1 (@ 7 Ak

ij

F?}"D(w) = F(w) 3
(46)

20P(A) = FPQT P + 31, @)

2P4(8) = 272(A) = £ Q) (VP = 31, @8)

d36]1d342
Qm)y

where fl(]l.) is defined by (34), and

m;
’

@A) — _ Ay
fii (4) S(E; + E, — A) EE (49)
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The Majorana and the Dirac difference =« f E?(w —Ap) X
(P12 = 31e1).

When integrated over a laser spectral function of the
energy resolution Aw > vy,

F(w) 27k,
d ~ , 51
oy yhe O
the rate is
6472 aG% w|(¥)|*F
'(w) = r 0 —Ap). (52
o) = R O 0 = ). ()
The dipole strength is related to the natural width,
da
v =3 @@, (53)
which gives
167> G%y, F,
Pl (o) = — o EX0 (g — A
woy
— 16m2G2 10 Yo (o — Ap). (54)
Fw(z)A ij 0 fil-

We assume that the laser tuning is complete. In this last
formula three factors are separated; the laser quality factor
Fy/(w3Aw), the atomic factor 7y,/y, and the neutrino
kinematical factor f}].

Near the threshold, denoting the tuned frequency w by
w,
f (0 — Aft) = |C(O)|2(mimj)3/2(w - Afi

—m—m))?,

(55)

Flw = A7) = 125 Gl P + 1) P)omm )

To compute a reference rate let us take 13/4 for the
asymptotic value of the factors of |c;;|>, which gives a
basic unit of the rate

13 G3%F, P V\4
2BV (o) = 5.0 X 10719 s (S
647 w Awy Wmm w

ljl

10 ‘w 10~ 9)/,
Aw y

(57)

We have in mind radiative rates of order, 1/y, ~ 1 ns and
1/y ~ 1 s. Taking the energy scale at 0.3 €V, about 3 times
the pair mass of the heaviest neutrino 50 meV, then gives
the rate of order

1 X 10721 ¢!

M) P eV\410~%w 10%
(0.3 eV)? Wmm_2< ) Aw %

(58)

w
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This corresponds to = 1 event/day for 10' target atoms.
With a more experimental effort of improvement such as
the use of the resonator for laser irradiation, an enhance-
ment of = 103-10* may be expected and would help much
for the improved event rate.

The threshold suppression is large due to the square
factor (w — Ay; — m; — m;)*, but the rate rises towards

Fo

Ao (59)

2?‘” Ble) P+ 1) T2
This pattern repeats for each pair ij, and finally approaches
at much larger w > 2ms,

2G2w° (9 YrFo
241 , 60
157 (4 >7w2Aw (©0)

where 9/4 comes from the spin-flip term, while 1 comes
from the nonflip term. To determine neutrino masses, it is
necessary to fit experimental data of the threshold rise up to
an intermediate energy range. It is then important to have a
large statistics data with a reasonable precision in the
vicinity of the threshold, typically away from the threshold
a few to several times the sum m; + m;.

The neutrino mass spectroscopy may proceed step by
step. First, the laser frequency dependence, for instance <«
(w = A; = m; — m;)? near the threshold, may be used to
determine mass parameters m,;. Simultaneous with or even
prior to m5 determination at the threshold v;v5, distinction
of the Majorana and the Dirac cases is presumably possible
at w — Ay ~ O[6m;] = 0.3 eV. Once the mass determi-
nation is done, one proceeds to determine mixing angles by
measurement of the absolute rate. For instance, the sensi-
tivity to the smallest, unknown angle 6,5 is large at the
threshold of @ = Ay; + m3 + m, since the relevant factor
has a large coefficient;

3|c(1§)|2 + |c(1%)|2 ~ 2.9sin%65. (61)

For the hierarchical mass pattern, ms; + m; ~ 50 meV.
The rate at this threshold is smaller by a factor ~1/32
than at the threshold 2m; ~ 100 meV. Although smaller in
the rate, the ;3 measurement may be possible.

We conclude that for precision determination of absolute
values of m;, (i = 1,2, 3) and 63, pair emissions of (v373),
(v3v,), (v3v)) near their thresholds are channels we
recommend.

A quantitative Majorana-Dirac distinction may be
helped much by noting the rate difference at each threshold

ij;

[H(op) = Th(w) = 87°G} 52 L (1P = 31eP),

(62)

12 = 3lef) 1 = =2|UPIU 1% fori#j (63)
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3
= _2|Uei|4 + 3|Uei|2 - Z»

For a reference, we give a complete rate formula includ-
ing all pair channels;

for i = j. (64)

2G} v,
™ (w,) = ?f a)_(z) fda)tzj:ﬁ(w — Ay —m; —m;)
F(w; 0y, Aw)
(a) - Afn)2 + 7/2/4

X (CL) - Afl)SYl](

@&W+ﬂ&W>
ij ij
mi mJ

w — Afi’a) - Afl

+ 8519 = 319 Pymam(@ — Ay

ij
><Zij< i o ﬂ (65)

w — Afi’ w — Afl

V(e €) = ]%76j dxx(1 — )c)\/()c2 —e)((1—x)?* =€),
(66)

Lﬁﬂﬂzﬁﬁﬂww—émrwy—@.mﬂ

We wused a notation of laser spectral function
F(w; wg, Aw), which has a central frequency w, and an
energy resolution Aw. In the case of the Dirac neutrino the
last term m;m;Z;; in (65) is missing.

Under the assumption of Aw >> v, this rate becomes
simplified as

(w) = Tw?Aw y

Zﬁ(w - Afl - m; — mj)

ij

m*Af,»*mj
X [ dE,I(E,), (68)

HE) = (11 + 31c)P)E (0 — Ay — E))

X B = m)((@ = Agi = Ey)* = m?)

+ 5ij(|Cg-))|2 - 3|C§;)|2)mimj

X%ﬁ—m%@—Aﬁ—ﬂy—M) (69)

We plot in Fig. 2 the ratio of two rates; the Majorana rate
I'(w) and the Dirac rate I'’(w) divided by the rate of
massless neutrino pair emission. The parameters used for
this figure are

sin2012 = 035, sin2913 = 0032,
m; = 1.0 meV,

m; = 50.8 meV,

my, = 9.0 meV,

constrained and allowed by neutrino oscillation data. With

PHYSICAL REVIEW D 75, 113007 (2007)

] — —
0.8
oe6tinl M
0.4
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0
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FIG. 2 (color online). Ratio of laser irradiated pair emission
rate for Majorana (M) and Dirac (D) cases to the massless rate.
Vertical lines indicate 6 threshold locations.

this small mass m; the energy region in which the
Majorana rate is larger than the Dirac rate is restricted to
a small region below m; + m,. When m, is larger, say
m; =2 meV, the Majorana dominance persists up to
slightly above the 2m5 threshold. The Majorana dominance
is also sensitive to a value of sin?6,, [9].

These rates presented here may be an overestimate for a
dense gaseous target, since the energy resolution in this
case is governed by a usually much larger collisional

width,
P T ov

~15! | (70

Yer = 1S o= i300 K Tome O

V. NEUTRINO PAIR EMISSION FROM CIRCULAR
RYDBERG STATES

A. Circular Rydberg states

Circular Rydberg states [10] are highly excited; in addi-
tion to a large principal quantum number rn, it has the
highest angular momentum, [ = |m|=n — 1. These
states have the least overlap with the atomic core of charge
(Z — 1)e. Its size (r) = n’ag with a dispersion \/{(Ar)?) =
\Jn?/2ag, and the average momentum {p) = 1/(nag) with
a large dispersion. Thus, the circular Rydberg state is
almost classical, and the system is approximately de-
scribed by the hydrogenlike Coulomb potential of charge
e. A great merit of circular Rydberg atoms is that the
lifetime of radiative decay is very long, scaling as n’
with the principal quantum number 7, and ~O[1 ms] for
n~25[11].

The wave function ¢,,;,, of a circular Rydberg state of a
principal quantum number # is given by

l//nn—lt(n—l)(?) o eti(n—l)(p(},.Z - Z2)(n—l)/26—r/(na3)’ (71)

with the magnetic quantum number m = *=(n — 1), and ag
is the Bohr radius. For large coordinate arguments r > |z],
Rydberg states in general have the radial wave function of
the form
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R,,—1(r) oc ;i lemr/(nag), (72)

Momentum representation of Rydberg states is also
useful, as shall be shown in the following. Appendix B
describes momentum space representation of the wave
function.

For subsequent discussion it will become important to
compute a correlation integral of the initial and the final
wave functions of the atomic electron,

Bx
@m)?

ayy(8) = Y R®,  (73)
where A = g1 + ¢, is the sum of emitted neutrino mo-
menta. We assume that both the initial and the final elec-
tron states have definite azimuthal angular momentum
components, m;, m; along the microwave propagation,
taken as the z-axis. Using the expansion formula

il = Zi’(Zl + 1)ji(Ar)P(cosd’), (74)
1

cosf’ = cosf, cosf + sinf, sinf cos(pr — @), (75)

along with the addition theorem of the spherical harmonics

(21 + 1P (cost) = 4m> ¥}, (05, ¢a)Yim(6, @),  (76)

one readily derives m = my — m; after the angular ¢ in-
tegration in Eq. (73).

For simplicity we shall work out the correlation integral
only for the transition from a circular to a circular state.
The result is

i"

T2
X[ 7 dr P (AR, (DR (1), (T

—n,

a;(A) = c(ny, ng) Pol—ni(cosp ) el m)es

1 ne—n;
c(ny, ny) = fil d cos@ Py, (cosh)

X T’”ffl(cosﬁ) T’Z"*i (cosB), (78)

ny—1 i—

where P (x) is the normalized, associated Legendre poly-
nomial. We have taken the leading term in the / sum, [ =
|n; — ng|. In the large n limit of the principal quantum
number,

e \Y4 (T =y £ 3)/2\172
et ) = () (o= s o) Y

which is of order unity. The remaining radial integral is
neither small for the region of
n
on~ .| 80
n \/; (80)

227 1
with 6n = n; — ny < n; ;. For the transition around n =~

A=

—J
dp n3/2
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20,
20%m, 20\5/2
E,-—Ef~w~llmeV<—0> . (8
n- n
20\3/2
A=An.  Ag, =370 eV(—) L ®Y)
n

Thus, the correlation is large for a range of A > E; — E.

B. Field assisted pair decay

Suppose that the strong microwave is irradiated to a
Rydberg state |i), which then decays into a neutrino pair +
another Rydberg state |f);

Ri — Rf + ViVj. (83)

Electronic transition |i) — |f) under a strong electromag-
netic (EM) field may be dealt with adopting quantum
mechanical treatment of multiphoton processes [12], or
its extension. One needs a theoretical formalism in order
to properly incorporate strong field effects.

We consider a time-dependent EM field in the
Hamiltonian taking the radiation gauge

A5, A0
m, 2m, "

H(1)=e (84)

The plane-wave microwave of a linear polarization is given
by the vector potential of the form

>

A = B sin(w) (85)
w
while a circularly polarized case is
A(6) = £ (sin(wn)é, + cos(wnz,),  (86)
V2w ! ’

where é; is the orthonormal unit vector along the i-axis. We
took the z-axis as the direction of light propagation. In both
cases of the polarization Ej is the rms amplitude.

In discussions that follow it is important to distinguish
whether the field is in the strong or the weak range of the
strength. This may be characterized by interaction strength

e EO P

relative to its frequency;
E GHz\2
X100 <—Z> NS

m,w V cm w

Depending on a combination of parameters, E/(w?’n), this
can be either in the strong or the weak field range. Even if
the field strength is strong in this sense, it may be arranged
that the field is not large enough to ionize the Rydberg
electron, eE, < a/(n*ap) (attractive force from nucleus),
which means

Ey<7X10"n2V cm™ !, (88)

We would like to treat the weak interaction process alone
perturbatively, and solve interaction of atomic electrons
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with microwave as analytically as possible. As discussed in
Appendix B, the transition amplitude of the neutrino pair
emission is given by

Bqid’q, (dPp;dp; [ N
S—=1Dp~ f 7 %[ ! ]_ dr(Ap(0)|py)

(2m)° Q2m)?
X{P U A(00, 1)) Hy Uy (21, —00) | p;)
X{p;lA;(—00)). (39)

Here Hy is the weak interaction Hamiltonian of the neu-
trino pair emission of momenta g;.

States taken as initial and final ones in Eq. (89),
U,(t, —0)|A;(—o0)) and U,(t, 0)]|A;(00)), are bound state
solutions of the Schrodinger equation governed by
the Hamiltonian of Coulomb potential plus the micro-
wave field. Their momentum space representation
U,(t, —0)|p;) and Uy(t, )| p ) are used here. The ap-
proximation, taken by Keldysh [13] and the one we shall
also adopt, is to neglect the Coulomb interaction during the
occurrence of the weak process, and use the plane-wave
solution under the periodic field, known as the Volkov
solution [12]; the time-dependent part in this approxima-
tion is

(PrlU(o0, D Xpil Ua(,
P = D% (Pi— Pp) - [l dtiAlr
mexp[_i(p, Py Bi= PP [l 1(0)}
Zme m,

neglecting irrelevant phase factors.

The Keldysh approximation is valid if the correction of
the binding is small. This condition is worked out in [14],
and in our case it leads to the frequency condition, as
discussed in Appendix B,

o =2.1X%X10°%"* GHz, (90)

—00)|p;)

with n the maximal principal quantum number during the
transition. The field strength is also limited as in
Appendix B.

The weak Hamiltonian Hy, of the neutrino pair emission
is translationally invariant, hence its matrix element con-
tains the momentum conserving delta function;

<13f|UA(°°, DHy Ua(t, —0)|p;)

_ PP _Pi
- x| - ((2m B )
(Bi = By) - [ dAN\TGE s
m, )|
— g~ 672)Z<fu|JU|O> ' <f|ij|l>
ij

+
X 8(p; —

oD

The neutrino pair is not observed, hence one takes the
helicity and momentum summation of neutrinos. The he-
licity summation of

PHYSICAL REVIEW D 75, 113007 (2007)

Z Z |<fv|jij|0> ’ <f|]f,|l>|2

hh' if

has been examined in Sec. III in detail, yielding in the
leading approximation of 1/m,, the matrix element
squared of the form (2 — m;m,/(E,E,)), Eq. (28), times
the electron wave function factors.

To proceed further for computation of the transition
amplitude squared, we insert a convenient identity,

] di ] dE1284 — Gy — G2)8(Err — Ey — E>) = 1,

with E; = /q? + m? neutrino momenta, and use

dq,d’ 2 O >
| [FEsE [d [appears -4 - o

2
— E))f(41, 42)

Y d341d3CI2 Y > N
=fdA/dE12fW5(A_Q1 _Ch)

X 8(E\y — E; — Ex)|f(q1, §2)I* (92)

X 8(E12 - El

Neutrino momentum integration here is

e Pqdq oz >
nymy
X 6(E, —E, — E)|2—
(Ey, 2)( E1E2> (93)

a0

2 .2 2 2 _ . 2\9
><<E%2<1 + AT m2>—@<1 S L m2>
S12 2 S12
A’ _(my m2)2><1 _(my - m2)2>>

—mm, ——|1
v 6< S12 S12

si2=Efy — A% ©4)

In the massless neutrino limit

1 A?
KiEa D=~ o(B-F) 09

The threshold behavior of this quantity at s, —
(ml + m2)2 is

(mymy)* \/E

KM(E,y, A) ~
i (12 ) 272 (my + m,)?

= (my + my)*.

(96)

The transition probability is further simplified first by
using
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<13i|e_ip'zt/(2mf)|l4i(_°°)> = <ﬁi|€_iH°t|Ai(_°°)>
= ¢ ENpJA (=), (97)

and a similar relation for the final state, to replace the time-
dependent factor to e /%i~E7)"_ When the Fourier trans-
formation back to the configuration space is made, one
obtains

Bo.dp, )

f %3(@ — By = A)A(00) B )il A (— )
dBX i e _ -

= | Gt OnE = ay @), ©O8)

The transition probability is then

G2 [ < . [
S—l-izz—FfdAaiAz
(5= =F [aBla e [
> 00 > 2
XdElzK?f(En,A)l [ dzfl-f(Elz,A;r)‘ ,

99)

A i-A
F ip(Ero, Ait) = exp[—i(Aift N f i 6401)> }
L

e

(100)

Aif :Ei _Ef_EIZ' (101)

In the formula (99) three important factors are separated:
the integrated neutrino factor Kf‘;’ , the initial and the final
electron factor |a; j(A)IZ, and the time dependence factor
Fis related to microwave irradiation. This essential sim-
plification owes to the Keldysh approximation.

The time integral for this S-matrix element involves the
time interval of infinite duration. In practice, it is important
to understand a finite time integral of the form

ft dtlfjf(Elz, &,tl) = [t dtl CXp|:_i<Aift1 + ftl d[z
t fo —o0
" eA -Z(zz)ﬂ

m,

(102)

The analysis of this time-dependent phenomena is sepa-
rated into two parts; in the first part we present the con-
ventional multiphoton picture, which corresponds to the
narrow band region of a more general analysis in the last
subsection. There exists the additional wide band region
which typically exhibits the exponentially growing insta-
bility, a phenomenon very time dependent. Only a lower
limit of the growing rate is estimated in the wide band
region. The real process goes with these two mechanisms
entangled, hence it is complicated.
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C. Multiphoton picture

We postpone a general analysis of Eq. (102), and con-
centrate here on an approximate expansion that leads to
interpretation based on multiphoton processes. The multi-
photon process has been described in many textbooks; for
instance in [12] for the strong laser field, and in [1,15] for
microwave or rf fields.

We shall first discuss the case of linear microwave
polarization. Using the expansion in terms of the Bessel
function Jy(x),

e ibsinot — i JN(b)e"'N“”, b= eA - go
w

N=—0o0 e

. (103)

Equation (102) becomes a sum of simple exponentials. The
time integral is then readily computed, leading in the large
time limit to

t
[ dt, Fif(Eyp, pis Prith) — ZWZJN(b)a(Aif + No).
1

0 N
(104)

The argument of the delta function implies the simple
energy conservation, due to (101).

It would be instructive to numerically estimate the im-
portant quantity that appears in these formulas; the magni-
tude of microwave interaction,

b~ eEoA ) A E() (GHZ)2

m,w>  0.1eVVem!

(105)
w
The momentum scale A has been set here to around 2 times
the neutrino mass. This parameter b can be very large. The
Bessel function Jy(b) is maximal at b = |N|.
Using the standard formula
_2mws(A)?
lim ————

1—00 t

=2m8(A),

we derive at a time-independent rate w = lim,_,,, P(¢)/t of
the form

w= S
N

WN = ﬂG%[d&kzlf(&)P

e& ‘ EO
(e
m,w

x [ dE
,/‘\/Aer(mlerz)z 12
X 8(Ey, — Nw — E; + EpKM(Epy, A).

2

(106)

There is a minimum number of photons N, in the N
summation; N > N, with

1 /5
Ny = —(\/A2 + (my + my)? — E; + Ey). (107)
w

This N, can be negative. A negative N, means that stimu-
lated microwave photons are emitted (instead of absorbed)
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to cause the neutrino pair emission. The requirement for a
negative N is

For the weak field the neutrino pair emission rate is in

proportion to
eA - Eg\ |2 [Ep\2N
(o ) ()
m, 1)

Interpretation of this result is that there are contributions
from N photon absorption for N > 0 or —N emission for
N < 0, which feed or take away energy |N|w to cause the
multiphoton transition. Roughly, the relation to the neu-
trino mass m;, m; + m, = E; — E; + No holds. Suppose
that the final state is specified. When E; > E; (the case of
upper level), only microwave absorption is possible for the
pair emission. When E; < E; (the case of lower level),
both absorption and emission is possible according to the
sign of my + m, — (E; — Ej). Since the rate is maximal at
IN| = b x E|, the adjustment of the field amplitude E, can
help to locate the position of the threshold of E; — Ef =
my + m,.

The neutrino pair emission accompanying N(>0) mi-
crowave absorption occurs as if a hypothetical heavy “bo-
son” of mass Nw + E; — E; decays according to the rate
wy. Let us clarify this process in the weak field limit. The
neutrino pair emission caused by N multiphoton transition
occurs with interaction strength,

(109)

Gr 1 (e - Ep\V

V2 N! ( 2m,w ) ’
This is the E1 transition repeated N times plus the weak
pair emission. The hypothetical boson does not have a

definite momentum to be transmitted to the neutrino pair,
but the conservation law is replaced by

(110)

Qa3 8(A) — la(B)

There is nothing special about this, because both initial and
final states are not momentum eigenstates. The momentum
distribution has a width = a’m,/n>. The total rate is a sum
over N of many multiphotons. A large mass “particle” of
N > 1 might be called a heavy electron due to many
photon clouds. The rate of a very heavy electron decay is

suppressed by
1 2 Ei_Ef_EIZ 2N
() )

because the Bessel function behaves as [Jy(b)] ~
(b/2)*N /(N1)?.

To obtain a large rate, it is necessary to have many
contributions of different N. The property of the Bessel
function Jy(b) tells that the N sum can be large when N is
of order b or less. The ratio b/N, in particular

(111)
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b _ 65 : EO
|Nol VAZ + (my + my)?m,w

, (112)

can however be small, especially if A > m; + m,, be-

cause in this case
b E E, GH
= = 0[6 °}~ 0[0.9 X 10750 2%
[Nyl

Vem™! o

(113)

m,

Thus, it is important to have for N, a small, or better, a
negative number such that the N sum contains contribu-
tions from small N’s.

A better, but still crude way of estimating a number of
multiphoton contributions of many paths, hence the pair
emission rate is as follows. Take EO along the z direction.
For a given A_, there is a region of relatively large value of
the Bessel function Jy(b) at b = N > 1,

el E, m,w*\1/3 _I@/3)
JN<m6w2> C(eAZE()) , c= PSRy 0.45.
(114)
Replacing the Bessel function by this gives the rate
e AE e
w = #ch%fdAKf‘;( 0 4 E;, — Ey, A)
m,w
> m wz 2/3
X lag(A)P =2 . 115
lay GF(7E %) (115)

The threshold behavior of the rate based on (115) may be
derived using the neutrino factor K f‘f near the threshold,

(96). For this estimate we assume the correlation integral of
order unity a;; = O[1], to give

(mymy)3? (m,w*\2/3
2GLJ < No + E; — E;)?
F (m1 + m2)2 eEO %“(( @ ! f)
— (my + my)?p/3 (116)
where J is
1 1
J= ] dpp(l — p2)5/6] dzz=231 — 22,
0 0
c2J ~ 0.15. (117)
The N summation is limited by
V< N (118)

eEoAl'f EO m, GHz\2
Npax = O ~0.2 ,

e [ m,w? } Vem™! 50 meV( ® )
where A;/ is a typical momentum transfer of order m; +
mj.

The enhancement factor R may be defined relative to the
standard rate near the threshold, G%(m, + m,)’/(1573);
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R 4532 <m6w2>5/3 (mymy)3/?

16 eEO szif(ml + m2)7
eEyA,; 2 8/3
X ((70 f + Ei - Ef) - (ml + m2)2>

m,w

(119)

For the weak field of eE,/(m,w) < 1, the threshold ap-
pears at E; = E; —m; — m,. It may also appear as a
threshold of the field amplitude E,. A large power 8/3
implies that the rate quickly increases once the threshold is
passed.

Well above the threshold one may use Eq. (95), and the
rate and the enhancement factor become of order

215,05 2/3 E;, — E/\16/3
277 Grw” (Me@NTA T (120
448 ek w

(121)

R~ 56( eEO )14/3<m1 + m2>1/3’

m,w w

taking A, = m; + m,. This factor is very sensitive to the
microwave power = P7/3 and its frequency = >, and its
precise determination requires a more elaborate
computation.

There is also contribution from the N < b region of the
Bessel function Jy(b) ~ /3. This contribution is esti-
mated as

2 5
7G(AE) mew} (122)

WN<b:0[ 240 eE,

We shall finally consider the case of circular polariza-
tion. In this case

> EoA
A-A@) = ZL sin, sin(wt = @,), (123)
w

0, ¢a being angle factors of the momentum A. The
expansion in terms of the Bessel function becomes

A A7) eEyA sinfy
exp| ie =y Jy|————
p[ m, } NZ N”( V2m,w? >

X expl—iNywt ¥ iNyjpp)]

(124)

The pair emission rate for a circular to a circular transition
is given in terms of the correlation integral by

0 1
w= 2772G%f dAAzj dcosfla;(A)[?
1

0 —

np—n;
X ,‘panrn,»fl

(cosfy) X O(E; — E; + (n; — ny)w

7 <eE0A sin0A>
M\ 2m,w?

— A g+ my)?) % ’

X KMN(E; + (n; — np)o — Eyp, A). (125)

A detailed and more precise rate computation in the
multiphoton picture shall be presented elsewhere, and be
compared to a more general approach presented in the
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following subsection. The method described in the present
subsection has a limitation, and is interpreted as a part of
more general approach we shall now describe.

D. Relevance of parametric resonance

Consider the time-dependent part of the rate
S . t
W iyt Epy, &) = Re( (1) f drlf,-f(rl)) (126)
0

which appears in the transition rate given by the time
derivative of the transition probability (99), namely

(o)

G o[
) = — dA i A 2
w0 =7 [ B [ s

X ’Wif(t; E12) 5)

dE,K}/(Ep, A)

(127)

We define a complex function G(z; a, b) in terms of new
dimensionless variables a, b

G(l‘; a, b) = plawt+ibsinwt ft dt/efiawt’fibsinwt’, (128)
0
E,~E,—E A-E
a=—t TR 2200 (1))
w m,

such that W,/(1; Eyp, A) = G(1; a(Eyy), b(A)).

The multiphoton picture in the preceding subsection
corresponds to an infinite time limit ignoring a coherence
in the computation of G(t; a, b), which leads to a time-
independent, constant rate w(oo). However, there exists an
intrinsic instability in some parameter region of (a, b),
which we now discuss. A coherence effect at finite times
is crucial in this discussion.

The quantity (129) satisfies a coupled differential equa-
tion,

bw? sinwt
ReG(¢
y @\ _ 0
ImG(z)
This system has an intrinsic frequency scale |a|lw = |E; —
E; — Ej| such as given by the energy difference between
the initial and the final states. This intrinsic scale is further
modulated by a periodic variation of parameters whose
frequency is @ and amplitude is |b|. Cooperative effects
of external modulation with the intrinsic property gives rise
to interesting phenomena of the parametric amplification.

In our time-dependent problem, the initial condition is
specified as

(;:2 + w?(a + bcoswt)? —bw?sinwt )

j—; + w?(a + bcoswt)?

(130)

G(0) =0, G(0) = 1. (131)

Thus, there is no way to avoid the instability of the para-
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metric resonance, once the parameters (b, a) fall in the
instability band.

General theory [16] of linear differential equations with
periodic coefficients indicates solutions of the Mathieu
type, and the unstable and stable band structure appears
in the parameter (b, a) plane. In the unstable band the
exponential growth is observed;

Re (el"(a,b)l/Z*i(E,-fEf7E]2)tf(wt))’ (132)
with f(7) a periodic function, hence the instability greatly
expediates depletion of the prepared state. The parameter b
is essentially o the total momentum of the neutrino pair A,
projected onto the microwave electric field direction taken
the z-axis here, which is also a typical momentum transfer
in the electron transition |i) — |f). Another one a « E,, —
E; + E; is the total neutrino energy minus the mass dif-
ference E; — E;. Thus, (b,a) « (A, E;, — E; + Ef), and
the unstable band structure in (b, a) plane signifies where
in the phase space of the neutrino pair contributes to the
emission rate. The instability signifies an exponential de-
cay of the initially prepared state.

The relative weight of the b term in Eq. (130), the
magnitude |b|/|al, signifies the importance of the para-
metric amplification. Roughly, the narrow band region is in
the parameter region of |b| < |a|, and the wide band
region is in |b| > |a|. The multiphoton picture explained
in the previous subsection corresponds to a narrow band of
instability. The Nth band in the narrow band region corre-
sponds to a mass difference of initial and final states,
Nw + E; — Ej shifted by the energy input of N microwave
photons. The narrowness implies weaker rates. The dia-
grammatic interpretation of the narrow band decay has
been given in the literature [17]. The correspondence be-
tween the two regions is given by

6& ‘ EO
3o
N m,w

= Wif(f; Ey, ﬁ)

2
278(Nw + E; — E; — Ey)

(133)

Rather than a discrete N sum of multiphotons there is a
continuous spectrum of heavy electrons of mass Ej,
present in the wide band region.

The wide band region gives a much more enhanced
time-dependent rate than the narrow band multiphoton
result presented in the previous subsection [18]. If (b, a)
lies deeper in the instability band, namely, the larger
|b|/|al is, the greater the rate is. The rate readily exceeds
order unity (in the unit of 1/w, that is I' = O[w]) deep in
an instability band. In the wide band region there is no
definite number of muliphotons N, and the continuum
broad mass E; — E; range all contribute to the instability.
If one experimentally arranges that there is no radiatively
decaying state as in the cavity QED, then this means that
the neutrino pair emission is expediated; enhanced pair
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emission. It is thus important to depict the structure of
stability-instability bands in the (b, a) plane.

The phase space region in terms of (E,, A) of the wide
band region is estimated as follows. One can imagine that
the most important region is restricted to |a| = |b| due to
an experience in the Mathieu equation. For large b’s, the
coupled equation (130) approximately decouples, and the
coefficient term of the form o« (1 — cos2wt) implies that
the relevant (b, a) region is indeed deep in wide band
regions. The exponential growth rate given by e**’/(Aw)
is of order A = 0.15/2, as shown in [19].

The two constraints on the wide band region |a| < |b|

and the mass restriction correspond to a region of (E;,, A),

E\2
(Epy — i+ E,) = (ﬂ) A2,
mow) °

(134)
B2, =A%+ (my + my)2.

This gives a neutrino pair momentum integration of order

N N E,—Eq+elA,| >
2 [[dBlay @) [ VK &)

i*Ef*e A,
X Wii(t; Ep, ), (135)
for € << 1 with
E
e= |20 (136)
m,w

For a stronger field, the phase space area is quite different.
In particular, towards and above the critical strength E,

Me® 11X 105V em™!

E, = (137)

w
@,
the momentum space integration is changed to

E;—E;+elA,|

2 f d&la,»f(&)P(G(A* ~A) dEy,

E;—E;—€lA,]
E;—E;+elA,]
+0(A, — A,) )

A%+ (my+m,)?

X K%(Elzy E)Wif(t; Ey, 5) (138)

In the € > 1 limit the second term is dominant, and

A, = %(E,» — E; + \/A)% + A2+ (my + my)?).

We shall make a crude estimate for the pair emission rate
in the wide band region by making two assumptions. We
first introduce an average rate factor <W,»f), and next
compute the rate far away from the threshold region for
which one may use Eq. (95). The E|, integration then gives

&3
2472

~ f dRla, (R)P =S IA (W), (139)

It is thus expected to obtain the rate larger than
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G%’A?ndx eEO 3
~————— [ —— i 14

YT 40m <m6w> W) (140)

E 3/GHz\4

~ 6 X —28 (—1 » 0
6X 1072 s (<W,f>w/10)<kv Cm71>< w)
A 6
X max

(400 eV> ’ (141)

using A,,.x of order, Eq. (82).

Once the large rate is confirmed, one may go to the
threshold region, in which one replaces the energy integral
by

E;—E;+elA,| >
/ dE K (Ep, )
A%+ (my +my)?

(’"17'12)3/2

A2y + oy 5 B T eldD

XA = Ep + elAl? = A2 = (my + my)?. (142)

This gives the threshold rate, with € = eE/(m, ),

G%Arznax (7711’”2)3/2
6m (m + m,)*e

— (my + my)?)> (W) /10).

((EAmax + Ei - Ef)2
(143)

Above a field threshold of (m; + m, = 2m,)

m, w 400 eV
50 meV GHz A,

2meomy

A (144)

the rate quickly rises to a rate of order

G2A3 . xm, [ eEy\3
w2k ( °)<W,-f>,

2407 m,w

(145)

taking m; = m,,. This rate is m, /A, times the rate much
above the threshold.

A large factor by (A,,,x/m,)’ in these rates is due to a
larger momentum spread in sharply localized circular
Rydberg states.

The critical field strength for the circular polarization is
a factor /2 larger, but the phase space is also different.

It is important to keep in mind that the coherence should
be maintained during the microwave irradiation. If this is
possible for a long time, one may expect a huge growth
factor (W, ). The ultimate bound on (W, ) is derived by
the unitarity argument in the following way [20]. The
unitarity for the time-dependent process requires

T
Z/ d[/Wfi(t/) =1
T J e

With a given time-dependent rate w ;;(#), this is essentially
a bound on the allowed time 7. It is appropriate to parame-
trize our weak process with

(146)
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wp(t) = A((Z—;f — 1)56)“"’,

due to the energy dependence of the weak transition n; —
ny by the neutrino pair emission. The most important
dependence is on the final state ny, as indicated. We
ignored less important dependence of A, A on n;. The
requirement of the unitarity Eq. (146) is then roughly

n \2 5
ie"‘”f ! dnf4nf<<ﬁ> — 1> =1.
Aw ng ny

For an estimate of ny we take the allowed lowest state for
the pair emission, E; — E; > 2m,,

(147)

(148)

2

a“m,

<2m,,. 149

o m, (149)

Taking as an order of magnitude estimate ny=

Jaim,/(4m,) gives
5n° 20\'2/50 meV\5

A pror <210 35 1015(2 I, as0)

Aw 2ni n; v

corresponding to the maximal rate

ATV Z 1Y =3 x 105 g1 @ (0 meVyS
ng GHz\ m,

\2 5
(G )
ny
with A = 10.

The actual rate would be very large, much larger than the
number given in Eq. (141), but presumably less than the
unitarity bound (151). A practical rate might be limited by
actual experimental conditions such as the loss rate of
coherence of Rydberg atoms. Most relaxation time may
be arranged to be much larger than 10/w =
1073 s(GHz/w) such that the real rate may be close to
the unitarity bound. There appears a real possibility of
measuring the neutrino pair emission process from circular
Rydberg states if the background rejection is successful.

It is beyond the scope of our present work to precisely
locate and further exploit the wide band regions for the
parametric amplification of the neutrino pair emission. A
detailed study of this aspect will appear elsewhere.

(151)

VI. A FEW COMMENTS ON EXPERIMENTAL
METHOD

Clearly, one needs a systematic study, both theoretical
and experimental, to implement our idea of the neutrino
pair emission from circular Rydberg atoms. We shall be
content here to make a few, rather trivial, comments to-
wards a more organized study.

Laser irradiated pair emission process is relatively
straightforward, hence we shall focus on the microwave
irradiated Rydberg atoms.
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A. Key ideas for experimental success

One has to avoid the danger of disappearance of the
initial Rydberg states via ordinary radiative decay, since it
might also be enhanced by the wide band parametric
resonance. For this purpose, we may use circular
Rydberg states as the initial prepared state, for which
radiative decays are very much suppressed except n —
n — 1 E1 transition. This E1 transition can be suppressed
for instance by the cavity QED effect [2]; radiative decay
mode within a cavity is modified by the boundary effect,
and if the wavelength A > 2d, a size of the cavity, the
decay may be inhibited. The inhibition prevails for all
multiphoton transitions, since all photons in this case
satisfy the same condition A > 2d once one photon tran-
sition is inhibited. One must however arrange experimental
apparatus such that the cavity does not interfere with the
microwave irradiation [21].

Another important issue is how to unambiguously iden-
tify the pair emission process. Identification of final states
is most important for the determination of the threshold,
and this can be done by the field ionization technique [1].
The threshold for the neutrino pair v;v; appears at

eAi‘f + Ei - Ef = m; + mj, (152)

with € = eEy/(m,w).

The best way for unambiguous identification of the weak
process is to measure parity violating (PV) effects which
are absent in QED processes. The simplest of this kind is to
use a circularly polarized photon beam and to measure the
difference of the atomic transition rate between h = *1
polarization. The asymmetry of the emitted photon distri-
bution along the direction of the polarization « J- Dy is
another parity violating measurable. A detailed theoretical
study of this effect will appear elsewhere.

B. How to proceed

Since the small rate is a critical issue, an organized
strategy of experimental efforts is important. We believe
that the first step should be the discovery of the neutrino
pair emission from excited atoms, and then one should
steadily approach the smaller energy scale towards the
pair emission threshold. Presumably, at a few times twice
the heaviest neutrino mass of order 0.05 eV, namely, at
energy =~ 0.3 eV, one can hope to observe a signature of
the difference between the Majorana and the Dirac neu-
trino. The final step is a precision neutrino mass spectros-
copy along with the measurement of mixing angles.

The use of atoms for neutrino physics is a new concept.
It is evident that many R and D are required for this project,
but one can initiate both experimental and theoretical
efforts by use of modest human and budgetary resources.
This is perhaps the ideal way towards a difficult physics
goal.
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Note added.—After submission of this paper for publi-
cation, we realized that laser irradiated pair emission at
lower thresholds 2m; and m; + m, is useful for detection
of the relic cosmic neutrino of 1.9K via the Pauli blocking
effect. See [24] for this observation.

Note added in proof.—After submission of this paper for
publication, an analysis based on the optical Bloch equa-
tion has been performed, and the greatest enhancement
factor has been obtained, when the second laser is irradi-
ated to the |I*) « |I"*) transition. This work will be pub-
lished elsewhere.

APPENDIX A: BASIC FORMULAS OF MAJORANA
FIELD

Using the representation of the Clifford algebra

Ya¥B T ¥Y8Ya = 28ap (A1)

for y, (greek « = 0, 1, 2, 3 and roman { = 1, 2, 3),

0 1 0 ;
w=(10) %=(, §) @

—0,
(7o O
YoVi 0 o ’

(A3)
. -1 0
Ys = WoY1Y2Y3 = ( 0 1),

v=(*% A

X > 0 2 Ys s
0 1 (A9

(3)=30+ 9w
the Dirac equation

iY,0 — miyp =0, (AS)

is written in the following 2-component form:
(io, +io - 6))( = me.
(A6)

The identification, y = io,¢", in the Dirac equation
gives the Majorana equation:

(io, — ia - 6)<p = my,

(i0, — i6 - V)@ = ima ", (A7)
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with m the neutrino mass. The 2-component spinor ¢
belongs to (1/2,0) of the irreducible representation of
the Lorentz group, while io,¢* belongs to (0, 1/2).

An explicit solution of helicity eigenstate is derived by
solving the helicity eigen-equation of eigenvalue h = =1,

EG) =0 ()= )
(A8)

The full plane-wave solution to the Majorana equation is
then

QD(X) = eiip'fo — elPx Ep;hpN*la'zf*, (A9)
—#n = [ PThps
e=pm=(,0 "0 > (A1)

An equivalent form of the solution is obtained by using

E, +hp _ |E, +hp
m Ep_hp

When the helicity operator —id - v / V| is applied, the first
term gives the multiplicative factor i, while the second
gives the factor —h. Thus, the consistent quantum inter-
pretation of particle annihilation and antiparticle creation
of two terms is given by Eq. (6).
The free quantum Majorana field is described by the
Lagrangian density [3] of
Ly =(ptidge + @tig - Vo) + (He)
— im(pto,0* — @70 0)). (A11)

The Majorana particle must be quantized according to the
anticommutation rule
{ea(® 1), 5, 0} = 83(F — 7)8up. (A12)

Mode decomposition in terms of plane waves is given by

o) = 3| e(p Wu(p. e + ¢t (5, —h
L h

D
E +h .

x P it (p, h)e””} (A13)
E,—hp

{c(p 1), (B WD} = 855 8,

where

(A14)

{c(B, h), c(p', W)} = 0.

The relation of discrete and continuous momenta is given
by

(A15)

PHYSICAL REVIEW D 75, 113007 (2007)

D=V i
5

25 Q2P

5 89 — b,

_ @ap .
= T f(p),

(Al6)

with V the volume of the normalization box.

The normalization of the 2-spinor consistent with ca-
nonical anticommutation equation (A12) is derived as
follows. Computing the anticummutator with the plane-
wave mode decomposition gives

{eul® 1), 0}G. 1) = z[efﬁwnw, WI(p + hps)
D.h
X (p+he - plag + e PE)
E +

hp
X L—=|N(p, h)I?
E, = hp

X (p+ hp3)(p — ho - ]_)J)aﬁ:|'

(A17)
We have used the relation
Ep,WENP,h) = (p+ hps)(p + ha - p).  (Al8)
The correct anticommutation relation thus requires
1 E,— hp
N(p, h) == |—L——. (A19)
2\ PEy(p + hp3)

Useful relations on the normalized wave function,
N 1 E,—hp p+hp
ulp,h) =~ |—2— 73 ) A20
(B, h) 2 VpEp(p + hp3)<h(191 +ip) (A420)

u(p, Wut (B, h) = 1(1 - h—p><1 + h“—”’), (A21)
4 E, p

are

1/ h
ut (B, Wyu(p, h) = —(1 - —p>. (A22)

2\ E,

In quantum field theory it is important to identify the
Hamiltonian, momentum, and propagator. They are given
for the Majorana field,

HE) = —ipté - Vo + (He)

im )
+ 7(%0“72%0* —¢loa0), (A23)

H= f BPxHX) =D E,ct(p, h)e(p, h), (A24)
D.h

P — f Pxet®(=iV)eE) =3 pct (B, he(p, h),
D.h

(A25)

113007-18



NEUTRINO PAIR EMISSION FROM EXCITED ATOMS

d*p el =)

Qm)* p?> —m? + i€’
(A26)

OIT(e( et )I0) = =0 - 9

d4p eiP(y—x)
Qm)* p?> —m? + i€
(A27)

OIT(e(y)¢(x)[0) = ima,

The energy (A24) and the momentum (A25) formulas of
the Majorana field establish the correctness of identifica-
tion of ¢ (p, h) and c(p, h) as particle creation and anni-
hilation operators. The second form of the propagator
(A27) is characteristic of the Majorana field that does not
conserve the fermion number, and does vanish for the
Dirac field.

APPENDIX B: WEAK PERTURBATIVE PROCESS
FOR RYDBERG ATOMS UNDER MICROWAVE
IRRADIATION

Consider a Hamiltonian system H, perturbed by 2 types
of a generally time-dependent interaction, one of which
with Hy + V,4(¢) is treated as solvable, and Vy as very
weak:

22

H=Hy+ Vi) + Vs  Hy= 571 +Ve®), (B
(i, — Hy — V4(1)IA, (1)) = 0, (B2)
|An(t)> = UA(t’ tO)lAn(tO»;
o (B3)
Ualt, ty) = exp[—lﬁ dt,(Hy + VA(tl))i|,
(A, (D] = (A, (t)|UA(t0, 1) = (A, (1)U (15, 1). (B4
In the interaction picture, the weak vertex is

V(t) = Uy (1, 10) VU, (1, 10). (B5)

The transition S matrix S is computed using solutions
|A, (1)) of (B2), from

(A (o) IVE(1)A(20))
= (AU (11, 1) VU (11, 10)|A(20))-

By taking the time limit of 7, — o0 and 7y — —oo, the
transition matrix element is to lowest order of Vj,

(S_l)fl"“_ljoo dtl

(B6)

X (Ap(00)|U; (1), 00)VEU,(1), —0)|A;(—00)).

(B7)

Expand states at time = *o0 in terms of a complete set of
momentum eigenstates;
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3ol N B — 00
A, (—00)) = fd plpé’:;;;; L3 (B8)
[ d p (A ()| p X Pyl
(S — 1)f,~~—zf_oodt1/ Pf (277)3/? Dy
X Upy(00, 1) VU, (2, —00)
& pi| pXpilA;(—0))
X[ 14 P(Zi)yz . (B9)

We shall need to compute the transition matrix element for
momentum eigenstates

(PrlU(00, 1)VgU(t), —00)|p;),
sandwiched between momentum state wave functions of

(Af(0)[py), (PilAi(=00)). (B11)

(B10)

States here

Ua(t, =0)p),  (ylU(00, )T = Un(t, )| By,

(B12)

are solutions of the Schrodinger equation, Eq. (B2).

These momentum state wave functions for the H atom
are given in [22]. For instance, those of circular states of
[=|ml=n—1are

(np)"!

((np)* + p3)r+t’
(B13)

wnn*lm(ﬁ) o eim¢(1 - COSZH)(”*I)/z

with m = =(n — 1). For general states, using the atomic
unit of py = 1/ag

lpnlm(i}) = Fnl(p)Ylm(e’ QD): (B14)
(np)' n’p* -1
F(p) = G + 2 Ltll—l<m>: (B15)

where C}(x) is the Gegenbauer polynomial (of order N).

Both states, Uy (t, —0)|A;(—00)) and Uy (0, 1)|A;(c0)),
contain the Coulomb and microwave field effects. Keldysh
[13] neglects the Coulomb interaction. According to Reiss
[14], this is justified if

X — (B16)

is small. (QE)—i is the number of modes in the field.) This
reduces to

2
r< Ec

- aw’m?

(B17)

in our problem. E,. is the maximum field allowed below
ionization, given by
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a

eE. = m. (B18)

Thus, the above parameter
r = <a2 m—>2i8 ~43% 105<@>2<9>8. (B19)

w n w n

This parameter is small if

o = 2.1 X 10% GHzn 4, (B20)
and

E=Eqc=am2n*~52xX10°Vecm™'.  (B21)

Thus, we arrive at
t
Uat, —oo)|ﬁ>~exp[—i [ dn
700)

>2 > A’ 2A_)2
¥ (P PAW) | A1) 7
2m m 2m

(B22)

which is the Volkov solution [12], the exact plane-wave
solution under a periodic field. Using an explicit form of

A,

PHYSICAL REVIEW D 75, 113007 (2007)

>

. E
ft dt,A(t;) = =2 sin(wt) + (const). (B23)
1) w

Using the Volkov state (neglecting irrelevant constants),
the matrix element is

(PrlUA(00, )V U,(2, —00)| ;)
-9 -9 N N >
T — .\ Jp— . E
~ exp[ —i(pl Py t+ (i sz) 0 sin(wt)>:|
2m maw

X (ps|Vslpo)- (B24)
Time dependence of the relevant matrix element of the
integrand of (B9)

(A(00)[p )P U4 (00, VU A(t, —00)| p, X pilA;(—0)),
(B25)

is in Eq. (B24).

The high frequency Floquet theory (HFFT) of [23] that
predicts dressed Coulomb potential caused by averaged
field irradiation appears irrelevant in our parameter range
of field strength and frequency.
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