Go to the first, previous, next, last section, table of contents.


RTL Representation

Most of the work of the compiler is done on an intermediate representation called register transfer language. In this language, the instructions to be output are described, pretty much one by one, in an algebraic form that describes what the instruction does.

RTL is inspired by Lisp lists. It has both an internal form, made up of structures that point at other structures, and a textual form that is used in the machine description and in printed debugging dumps. The textual form uses nested parentheses to indicate the pointers in the internal form.

RTL Object Types

RTL uses five kinds of objects: expressions, integers, wide integers, strings and vectors. Expressions are the most important ones. An RTL expression ("RTX", for short) is a C structure, but it is usually referred to with a pointer; a type that is given the typedef name rtx.

An integer is simply an int; their written form uses decimal digits. A wide integer is an integral object whose type is HOST_WIDE_INT (see section The Configuration File); their written form uses decimal digits.

A string is a sequence of characters. In core it is represented as a char * in usual C fashion, and it is written in C syntax as well. However, strings in RTL may never be null. If you write an empty string in a machine description, it is represented in core as a null pointer rather than as a pointer to a null character. In certain contexts, these null pointers instead of strings are valid. Within RTL code, strings are most commonly found inside symbol_ref expressions, but they appear in other contexts in the RTL expressions that make up machine descriptions.

A vector contains an arbitrary number of pointers to expressions. The number of elements in the vector is explicitly present in the vector. The written form of a vector consists of square brackets (`[...]') surrounding the elements, in sequence and with whitespace separating them. Vectors of length zero are not created; null pointers are used instead.

Expressions are classified by expression codes (also called RTX codes). The expression code is a name defined in `rtl.def', which is also (in upper case) a C enumeration constant. The possible expression codes and their meanings are machine-independent. The code of an RTX can be extracted with the macro GET_CODE (x) and altered with PUT_CODE (x, newcode).

The expression code determines how many operands the expression contains, and what kinds of objects they are. In RTL, unlike Lisp, you cannot tell by looking at an operand what kind of object it is. Instead, you must know from its context--from the expression code of the containing expression. For example, in an expression of code subreg, the first operand is to be regarded as an expression and the second operand as an integer. In an expression of code plus, there are two operands, both of which are to be regarded as expressions. In a symbol_ref expression, there is one operand, which is to be regarded as a string.

Expressions are written as parentheses containing the name of the expression type, its flags and machine mode if any, and then the operands of the expression (separated by spaces).

Expression code names in the `md' file are written in lower case, but when they appear in C code they are written in upper case. In this manual, they are shown as follows: const_int.

In a few contexts a null pointer is valid where an expression is normally wanted. The written form of this is (nil).

Access to Operands

For each expression type `rtl.def' specifies the number of contained objects and their kinds, with four possibilities: `e' for expression (actually a pointer to an expression), `i' for integer, `w' for wide integer, `s' for string, and `E' for vector of expressions. The sequence of letters for an expression code is called its format. Thus, the format of subreg is `ei'.

A few other format characters are used occasionally:

u
`u' is equivalent to `e' except that it is printed differently in debugging dumps. It is used for pointers to insns.
n
`n' is equivalent to `i' except that it is printed differently in debugging dumps. It is used for the line number or code number of a note insn.
S
`S' indicates a string which is optional. In the RTL objects in core, `S' is equivalent to `s', but when the object is read, from an `md' file, the string value of this operand may be omitted. An omitted string is taken to be the null string.
V
`V' indicates a vector which is optional. In the RTL objects in core, `V' is equivalent to `E', but when the object is read from an `md' file, the vector value of this operand may be omitted. An omitted vector is effectively the same as a vector of no elements.
0
`0' means a slot whose contents do not fit any normal category. `0' slots are not printed at all in dumps, and are often used in special ways by small parts of the compiler.

There are macros to get the number of operands, the format, and the class of an expression code:

GET_RTX_LENGTH (code)
Number of operands of an RTX of code code.
GET_RTX_FORMAT (code)
The format of an RTX of code code, as a C string.
GET_RTX_CLASS (code)
A single character representing the type of RTX operation that code code performs. The following classes are defined:
o
An RTX code that represents an actual object, such as reg or mem. subreg is not in this class.
<
An RTX code for a comparison. The codes in this class are NE, EQ, LE, LT, GE, GT, LEU, LTU, GEU, GTU.
1
An RTX code for a unary arithmetic operation, such as neg.
c
An RTX code for a commutative binary operation, other than NE and EQ (which have class `<').
2
An RTX code for a noncommutative binary operation, such as MINUS.
b
An RTX code for a bitfield operation, either ZERO_EXTRACT or SIGN_EXTRACT.
3
An RTX code for other three input operations, such as IF_THEN_ELSE.
i
An RTX code for a machine insn (INSN, JUMP_INSN, and CALL_INSN).
m
An RTX code for something that matches in insns, such as MATCH_DUP.
x
All other RTX codes.

Operands of expressions are accessed using the macros XEXP, XINT, XWINT and XSTR. Each of these macros takes two arguments: an expression-pointer (RTX) and an operand number (counting from zero). Thus,

XEXP (x, 2)

accesses operand 2 of expression x, as an expression.

XINT (x, 2)

accesses the same operand as an integer. XSTR, used in the same fashion, would access it as a string.

Any operand can be accessed as an integer, as an expression or as a string. You must choose the correct method of access for the kind of value actually stored in the operand. You would do this based on the expression code of the containing expression. That is also how you would know how many operands there are.

For example, if x is a subreg expression, you know that it has two operands which can be correctly accessed as XEXP (x, 0) and XINT (x, 1). If you did XINT (x, 0), you would get the address of the expression operand but cast as an integer; that might occasionally be useful, but it would be cleaner to write (int) XEXP (x, 0). XEXP (x, 1) would also compile without error, and would return the second, integer operand cast as an expression pointer, which would probably result in a crash when accessed. Nothing stops you from writing XEXP (x, 28) either, but this will access memory past the end of the expression with unpredictable results.

Access to operands which are vectors is more complicated. You can use the macro XVEC to get the vector-pointer itself, or the macros XVECEXP and XVECLEN to access the elements and length of a vector.

XVEC (exp, idx)
Access the vector-pointer which is operand number idx in exp.
XVECLEN (exp, idx)
Access the length (number of elements) in the vector which is in operand number idx in exp. This value is an int.
XVECEXP (exp, idx, eltnum)
Access element number eltnum in the vector which is in operand number idx in exp. This value is an RTX. It is up to you to make sure that eltnum is not negative and is less than XVECLEN (exp, idx).

All the macros defined in this section expand into lvalues and therefore can be used to assign the operands, lengths and vector elements as well as to access them.

Flags in an RTL Expression

RTL expressions contain several flags (one-bit bitfields) that are used in certain types of expression. Most often they are accessed with the following macros:

MEM_VOLATILE_P (x)
In mem expressions, nonzero for volatile memory references. Stored in the volatil field and printed as `/v'.
MEM_IN_STRUCT_P (x)
In mem expressions, nonzero for reference to an entire structure, union or array, or to a component of one. Zero for references to a scalar variable or through a pointer to a scalar. Stored in the in_struct field and printed as `/s'.
REG_LOOP_TEST_P
In reg expressions, nonzero if this register's entire life is contained in the exit test code for some loop. Stored in the in_struct field and printed as `/s'.
REG_USERVAR_P (x)
In a reg, nonzero if it corresponds to a variable present in the user's source code. Zero for temporaries generated internally by the compiler. Stored in the volatil field and printed as `/v'.
REG_FUNCTION_VALUE_P (x)
Nonzero in a reg if it is the place in which this function's value is going to be returned. (This happens only in a hard register.) Stored in the integrated field and printed as `/i'. The same hard register may be used also for collecting the values of functions called by this one, but REG_FUNCTION_VALUE_P is zero in this kind of use.
SUBREG_PROMOTED_VAR_P
Nonzero in a subreg if it was made when accessing an object that was promoted to a wider mode in accord with the PROMOTED_MODE machine description macro (see section Storage Layout). In this case, the mode of the subreg is the declared mode of the object and the mode of SUBREG_REG is the mode of the register that holds the object. Promoted variables are always either sign- or zero-extended to the wider mode on every assignment. Stored in the in_struct field and printed as `/s'.
SUBREG_PROMOTED_UNSIGNED_P
Nonzero in a subreg that has SUBREG_PROMOTED_VAR_P nonzero if the object being referenced is kept zero-extended and zero if it is kept sign-extended. Stored in the unchanging field and printed as `/u'.
RTX_UNCHANGING_P (x)
Nonzero in a reg or mem if the value is not changed. (This flag is not set for memory references via pointers to constants. Such pointers only guarantee that the object will not be changed explicitly by the current function. The object might be changed by other functions or by aliasing.) Stored in the unchanging field and printed as `/u'.
RTX_INTEGRATED_P (insn)
Nonzero in an insn if it resulted from an in-line function call. Stored in the integrated field and printed as `/i'. This may be deleted; nothing currently depends on it.
SYMBOL_REF_USED (x)
In a symbol_ref, indicates that x has been used. This is normally only used to ensure that x is only declared external once. Stored in the used field.
SYMBOL_REF_FLAG (x)
In a symbol_ref, this is used as a flag for machine-specific purposes. Stored in the volatil field and printed as `/v'.
LABEL_OUTSIDE_LOOP_P
In label_ref expressions, nonzero if this is a reference to a label that is outside the innermost loop containing the reference to the label. Stored in the in_struct field and printed as `/s'.
INSN_DELETED_P (insn)
In an insn, nonzero if the insn has been deleted. Stored in the volatil field and printed as `/v'.
INSN_ANNULLED_BRANCH_P (insn)
In an insn in the delay slot of a branch insn, indicates that an annulling branch should be used. See the discussion under sequence below. Stored in the unchanging field and printed as `/u'.
INSN_FROM_TARGET_P (insn)
In an insn in a delay slot of a branch, indicates that the insn is from the target of the branch. If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be executed if the branch is taken. For annulled branches with this bit clear, the insn should be executed only if the branch is not taken. Stored in the in_struct field and printed as `/s'.
CONSTANT_POOL_ADDRESS_P (x)
Nonzero in a symbol_ref if it refers to part of the current function's "constants pool". These are addresses close to the beginning of the function, and GNU CC assumes they can be addressed directly (perhaps with the help of base registers). Stored in the unchanging field and printed as `/u'.
CONST_CALL_P (x)
In a call_insn, indicates that the insn represents a call to a const function. Stored in the unchanging field and printed as `/u'.
LABEL_PRESERVE_P (x)
In a code_label, indicates that the label can never be deleted. Labels referenced by a non-local goto will have this bit set. Stored in the in_struct field and printed as `/s'.
SCHED_GROUP_P (insn)
During instruction scheduling, in an insn, indicates that the previous insn must be scheduled together with this insn. This is used to ensure that certain groups of instructions will not be split up by the instruction scheduling pass, for example, use insns before a call_insn may not be separated from the call_insn. Stored in the in_struct field and printed as `/s'.

These are the fields which the above macros refer to:

used
Normally, this flag is used only momentarily, at the end of RTL generation for a function, to count the number of times an expression appears in insns. Expressions that appear more than once are copied, according to the rules for shared structure (see section Structure Sharing Assumptions). In a symbol_ref, it indicates that an external declaration for the symbol has already been written. In a reg, it is used by the leaf register renumbering code to ensure that each register is only renumbered once.
volatil
This flag is used in mem, symbol_ref and reg expressions and in insns. In RTL dump files, it is printed as `/v'. In a mem expression, it is 1 if the memory reference is volatile. Volatile memory references may not be deleted, reordered or combined. In a symbol_ref expression, it is used for machine-specific purposes. In a reg expression, it is 1 if the value is a user-level variable. 0 indicates an internal compiler temporary. In an insn, 1 means the insn has been deleted.
in_struct
In mem expressions, it is 1 if the memory datum referred to is all or part of a structure or array; 0 if it is (or might be) a scalar variable. A reference through a C pointer has 0 because the pointer might point to a scalar variable. This information allows the compiler to determine something about possible cases of aliasing. In an insn in the delay slot of a branch, 1 means that this insn is from the target of the branch. During instruction scheduling, in an insn, 1 means that this insn must be scheduled as part of a group together with the previous insn. In reg expressions, it is 1 if the register has its entire life contained within the test expression of some loop. In subreg expressions, 1 means that the subreg is accessing an object that has had its mode promoted from a wider mode. In label_ref expressions, 1 means that the referenced label is outside the innermost loop containing the insn in which the label_ref was found. In code_label expressions, it is 1 if the label may never be deleted. This is used for labels which are the target of non-local gotos. In an RTL dump, this flag is represented as `/s'.
unchanging
In reg and mem expressions, 1 means that the value of the expression never changes. In subreg expressions, it is 1 if the subreg references an unsigned object whose mode has been promoted to a wider mode. In an insn, 1 means that this is an annulling branch. In a symbol_ref expression, 1 means that this symbol addresses something in the per-function constants pool. In a call_insn, 1 means that this instruction is a call to a const function. In an RTL dump, this flag is represented as `/u'.
integrated
In some kinds of expressions, including insns, this flag means the rtl was produced by procedure integration. In a reg expression, this flag indicates the register containing the value to be returned by the current function. On machines that pass parameters in registers, the same register number may be used for parameters as well, but this flag is not set on such uses.

Machine Modes

A machine mode describes a size of data object and the representation used for it. In the C code, machine modes are represented by an enumeration type, enum machine_mode, defined in `machmode.def'. Each RTL expression has room for a machine mode and so do certain kinds of tree expressions (declarations and types, to be precise).

In debugging dumps and machine descriptions, the machine mode of an RTL expression is written after the expression code with a colon to separate them. The letters `mode' which appear at the end of each machine mode name are omitted. For example, (reg:SI 38) is a reg expression with machine mode SImode. If the mode is VOIDmode, it is not written at all.

Here is a table of machine modes. The term "byte" below refers to an object of BITS_PER_UNIT bits (see section Storage Layout).

QImode
"Quarter-Integer" mode represents a single byte treated as an integer.
HImode
"Half-Integer" mode represents a two-byte integer.
PSImode
"Partial Single Integer" mode represents an integer which occupies four bytes but which doesn't really use all four. On some machines, this is the right mode to use for pointers.
SImode
"Single Integer" mode represents a four-byte integer.
PDImode
"Partial Double Integer" mode represents an integer which occupies eight bytes but which doesn't really use all eight. On some machines, this is the right mode to use for certain pointers.
DImode
"Double Integer" mode represents an eight-byte integer.
TImode
"Tetra Integer" (?) mode represents a sixteen-byte integer.
SFmode
"Single Floating" mode represents a single-precision (four byte) floating point number.
DFmode
"Double Floating" mode represents a double-precision (eight byte) floating point number.
XFmode
"Extended Floating" mode represents a triple-precision (twelve byte) floating point number. This mode is used for IEEE extended floating point. On some systems not all bits within these bytes will actually be used.
TFmode
"Tetra Floating" mode represents a quadruple-precision (sixteen byte) floating point number.
CCmode
"Condition Code" mode represents the value of a condition code, which is a machine-specific set of bits used to represent the result of a comparison operation. Other machine-specific modes may also be used for the condition code. These modes are not used on machines that use cc0 (see see section Condition Code Status).
BLKmode
"Block" mode represents values that are aggregates to which none of the other modes apply. In RTL, only memory references can have this mode, and only if they appear in string-move or vector instructions. On machines which have no such instructions, BLKmode will not appear in RTL.
VOIDmode
Void mode means the absence of a mode or an unspecified mode. For example, RTL expressions of code const_int have mode VOIDmode because they can be taken to have whatever mode the context requires. In debugging dumps of RTL, VOIDmode is expressed by the absence of any mode.
SCmode, DCmode, XCmode, TCmode
These modes stand for a complex number represented as a pair of floating point values. The floating point values are in SFmode, DFmode, XFmode, and TFmode, respectively.
CQImode, CHImode, CSImode, CDImode, CTImode, COImode
These modes stand for a complex number represented as a pair of integer values. The integer values are in QImode, HImode, SImode, DImode, TImode, and OImode, respectively.

The machine description defines Pmode as a C macro which expands into the machine mode used for addresses. Normally this is the mode whose size is BITS_PER_WORD, SImode on 32-bit machines.

The only modes which a machine description must support are QImode, and the modes corresponding to BITS_PER_WORD, FLOAT_TYPE_SIZE and DOUBLE_TYPE_SIZE. The compiler will attempt to use DImode for 8-byte structures and unions, but this can be prevented by overriding the definition of MAX_FIXED_MODE_SIZE. Alternatively, you can have the compiler use TImode for 16-byte structures and unions. Likewise, you can arrange for the C type short int to avoid using HImode.

Very few explicit references to machine modes remain in the compiler and these few references will soon be removed. Instead, the machine modes are divided into mode classes. These are represented by the enumeration type enum mode_class defined in `machmode.h'. The possible mode classes are:

MODE_INT
Integer modes. By default these are QImode, HImode, SImode, DImode, and TImode.
MODE_PARTIAL_INT
The "partial integer" modes, PSImode and PDImode.
MODE_FLOAT
floating point modes. By default these are SFmode, DFmode, XFmode and TFmode.
MODE_COMPLEX_INT
Complex integer modes. (These are not currently implemented).
MODE_COMPLEX_FLOAT
Complex floating point modes. By default these are SCmode, DCmode, XCmode, and TCmode.
MODE_FUNCTION
Algol or Pascal function variables including a static chain. (These are not currently implemented).
MODE_CC
Modes representing condition code values. These are CCmode plus any modes listed in the EXTRA_CC_MODES macro. See section Defining Jump Instruction Patterns, also see section Condition Code Status.
MODE_RANDOM
This is a catchall mode class for modes which don't fit into the above classes. Currently VOIDmode and BLKmode are in MODE_RANDOM.

Here are some C macros that relate to machine modes:

GET_MODE (x)
Returns the machine mode of the RTX x.
PUT_MODE (x, newmode)
Alters the machine mode of the RTX x to be newmode.
NUM_MACHINE_MODES
Stands for the number of machine modes available on the target machine. This is one greater than the largest numeric value of any machine mode.
GET_MODE_NAME (m)
Returns the name of mode m as a string.
GET_MODE_CLASS (m)
Returns the mode class of mode m.
GET_MODE_WIDER_MODE (m)
Returns the next wider natural mode. For example, the expression GET_MODE_WIDER_MODE (QImode) returns HImode.
GET_MODE_SIZE (m)
Returns the size in bytes of a datum of mode m.
GET_MODE_BITSIZE (m)
Returns the size in bits of a datum of mode m.
GET_MODE_MASK (m)
Returns a bitmask containing 1 for all bits in a word that fit within mode m. This macro can only be used for modes whose bitsize is less than or equal to HOST_BITS_PER_INT.
GET_MODE_ALIGNMENT (m))
Return the required alignment, in bits, for an object of mode m.
GET_MODE_UNIT_SIZE (m)
Returns the size in bytes of the subunits of a datum of mode m. This is the same as GET_MODE_SIZE except in the case of complex modes. For them, the unit size is the size of the real or imaginary part.
GET_MODE_NUNITS (m)
Returns the number of units contained in a mode, i.e., GET_MODE_SIZE divided by GET_MODE_UNIT_SIZE.
GET_CLASS_NARROWEST_MODE (c)
Returns the narrowest mode in mode class c.

The global variables byte_mode and word_mode contain modes whose classes are MODE_INT and whose bitsizes are either BITS_PER_UNIT or BITS_PER_WORD, respectively. On 32-bit machines, these are QImode and SImode, respectively.

Constant Expression Types

The simplest RTL expressions are those that represent constant values.

(const_int i)
This type of expression represents the integer value i. i is customarily accessed with the macro INTVAL as in INTVAL (exp), which is equivalent to XWINT (exp, 0). There is only one expression object for the integer value zero; it is the value of the variable const0_rtx. Likewise, the only expression for integer value one is found in const1_rtx, the only expression for integer value two is found in const2_rtx, and the only expression for integer value negative one is found in constm1_rtx. Any attempt to create an expression of code const_int and value zero, one, two or negative one will return const0_rtx, const1_rtx, const2_rtx or constm1_rtx as appropriate. Similarly, there is only one object for the integer whose value is STORE_FLAG_VALUE. It is found in const_true_rtx. If STORE_FLAG_VALUE is one, const_true_rtx and const1_rtx will point to the same object. If STORE_FLAG_VALUE is -1, const_true_rtx and constm1_rtx will point to the same object.
(const_double:m addr i0 i1 ...)
Represents either a floating-point constant of mode m or an integer constant too large to fit into HOST_BITS_PER_WIDE_INT bits but small enough to fit within twice that number of bits (GNU CC does not provide a mechanism to represent even larger constants). In the latter case, m will be VOIDmode. addr is used to contain the mem expression that corresponds to the location in memory that at which the constant can be found. If it has not been allocated a memory location, but is on the chain of all const_double expressions in this compilation (maintained using an undisplayed field), addr contains const0_rtx. If it is not on the chain, addr contains cc0_rtx. addr is customarily accessed with the macro CONST_DOUBLE_MEM and the chain field via CONST_DOUBLE_CHAIN. If m is VOIDmode, the bits of the value are stored in i0 and i1. i0 is customarily accessed with the macro CONST_DOUBLE_LOW and i1 with CONST_DOUBLE_HIGH. If the constant is floating point (regardless of its precision), then the number of integers used to store the value depends on the size of REAL_VALUE_TYPE (see section Cross Compilation and Floating Point). The integers represent a floating point number, but not precisely in the target machine's or host machine's floating point format. To convert them to the precise bit pattern used by the target machine, use the macro REAL_VALUE_TO_TARGET_DOUBLE and friends (see section Output of Data). The macro CONST0_RTX (mode) refers to an expression with value 0 in mode mode. If mode mode is of mode class MODE_INT, it returns const0_rtx. Otherwise, it returns a CONST_DOUBLE expression in mode mode. Similarly, the macro CONST1_RTX (mode) refers to an expression with value 1 in mode mode and similarly for CONST2_RTX.
(const_string str)
Represents a constant string with value str. Currently this is used only for insn attributes (see section Instruction Attributes) since constant strings in C are placed in memory.
(symbol_ref:mode symbol)
Represents the value of an assembler label for data. symbol is a string that describes the name of the assembler label. If it starts with a `*', the label is the rest of symbol not including the `*'. Otherwise, the label is symbol, usually prefixed with `_'. The symbol_ref contains a mode, which is usually Pmode. Usually that is the only mode for which a symbol is directly valid.
(label_ref label)
Represents the value of an assembler label for code. It contains one operand, an expression, which must be a code_label that appears in the instruction sequence to identify the place where the label should go. The reason for using a distinct expression type for code label references is so that jump optimization can distinguish them.
(const:m exp)
Represents a constant that is the result of an assembly-time arithmetic computation. The operand, exp, is an expression that contains only constants (const_int, symbol_ref and label_ref expressions) combined with plus and minus. However, not all combinations are valid, since the assembler cannot do arbitrary arithmetic on relocatable symbols. m should be Pmode.
(high:m exp)
Represents the high-order bits of exp, usually a symbol_ref. The number of bits is machine-dependent and is normally the number of bits specified in an instruction that initializes the high order bits of a register. It is used with lo_sum to represent the typical two-instruction sequence used in RISC machines to reference a global memory location. m should be Pmode.

Registers and Memory

Here are the RTL expression types for describing access to machine registers and to main memory.

(reg:m n)
For small values of the integer n (those that are less than FIRST_PSEUDO_REGISTER), this stands for a reference to machine register number n: a hard register. For larger values of n, it stands for a temporary value or pseudo register. The compiler's strategy is to generate code assuming an unlimited number of such pseudo registers, and later convert them into hard registers or into memory references. m is the machine mode of the reference. It is necessary because machines can generally refer to each register in more than one mode. For example, a register may contain a full word but there may be instructions to refer to it as a half word or as a single byte, as well as instructions to refer to it as a floating point number of various precisions. Even for a register that the machine can access in only one mode, the mode must always be specified. The symbol FIRST_PSEUDO_REGISTER is defined by the machine description, since the number of hard registers on the machine is an invariant characteristic of the machine. Note, however, that not all of the machine registers must be general registers. All the machine registers that can be used for storage of data are given hard register numbers, even those that can be used only in certain instructions or can hold only certain types of data. A hard register may be accessed in various modes throughout one function, but each pseudo register is given a natural mode and is accessed only in that mode. When it is necessary to describe an access to a pseudo register using a nonnatural mode, a subreg expression is used. A reg expression with a machine mode that specifies more than one word of data may actually stand for several consecutive registers. If in addition the register number specifies a hardware register, then it actually represents several consecutive hardware registers starting with the specified one. Each pseudo register number used in a function's RTL code is represented by a unique reg expression. Some pseudo register numbers, those within the range of FIRST_VIRTUAL_REGISTER to LAST_VIRTUAL_REGISTER only appear during the RTL generation phase and are eliminated before the optimization phases. These represent locations in the stack frame that cannot be determined until RTL generation for the function has been completed. The following virtual register numbers are defined:
VIRTUAL_INCOMING_ARGS_REGNUM
This points to the first word of the incoming arguments passed on the stack. Normally these arguments are placed there by the caller, but the callee may have pushed some arguments that were previously passed in registers. When RTL generation is complete, this virtual register is replaced by the sum of the register given by ARG_POINTER_REGNUM and the value of FIRST_PARM_OFFSET.
VIRTUAL_STACK_VARS_REGNUM
If FRAME_GROWS_DOWNWARD is defined, this points to immediately above the first variable on the stack. Otherwise, it points to the first variable on the stack. VIRTUAL_STACK_VARS_REGNUM is replaced with the sum of the register given by FRAME_POINTER_REGNUM and the value STARTING_FRAME_OFFSET.
VIRTUAL_STACK_DYNAMIC_REGNUM
This points to the location of dynamically allocated memory on the stack immediately after the stack pointer has been adjusted by the amount of memory desired. This virtual register is replaced by the sum of the register given by STACK_POINTER_REGNUM and the value STACK_DYNAMIC_OFFSET.
VIRTUAL_OUTGOING_ARGS_REGNUM
This points to the location in the stack at which outgoing arguments should be written when the stack is pre-pushed (arguments pushed using push insns should always use STACK_POINTER_REGNUM). This virtual register is replaced by the sum of the register given by STACK_POINTER_REGNUM and the value STACK_POINTER_OFFSET.
(subreg:m reg wordnum)
subreg expressions are used to refer to a register in a machine mode other than its natural one, or to refer to one register of a multi-word reg that actually refers to several registers. Each pseudo-register has a natural mode. If it is necessary to operate on it in a different mode--for example, to perform a fullword move instruction on a pseudo-register that contains a single byte--the pseudo-register must be enclosed in a subreg. In such a case, wordnum is zero. Usually m is at least as narrow as the mode of reg, in which case it is restricting consideration to only the bits of reg that are in m. Sometimes m is wider than the mode of reg. These subreg expressions are often called paradoxical. They are used in cases where we want to refer to an object in a wider mode but do not care what value the additional bits have. The reload pass ensures that paradoxical references are only made to hard registers. The other use of subreg is to extract the individual registers of a multi-register value. Machine modes such as DImode and TImode can indicate values longer than a word, values which usually require two or more consecutive registers. To access one of the registers, use a subreg with mode SImode and a wordnum that says which register. Storing in a non-paradoxical subreg has undefined results for bits belonging to the same word as the subreg. This laxity makes it easier to generate efficient code for such instructions. To represent an instruction that preserves all the bits outside of those in the subreg, use strict_low_part around the subreg. The compilation parameter WORDS_BIG_ENDIAN, if set to 1, says that word number zero is the most significant part; otherwise, it is the least significant part. Between the combiner pass and the reload pass, it is possible to have a paradoxical subreg which contains a mem instead of a reg as its first operand. After the reload pass, it is also possible to have a non-paradoxical subreg which contains a mem; this usually occurs when the mem is a stack slot which replaced a pseudo register. Note that it is not valid to access a DFmode value in SFmode using a subreg. On some machines the most significant part of a DFmode value does not have the same format as a single-precision floating value. It is also not valid to access a single word of a multi-word value in a hard register when less registers can hold the value than would be expected from its size. For example, some 32-bit machines have floating-point registers that can hold an entire DFmode value. If register 10 were such a register (subreg:SI (reg:DF 10) 1) would be invalid because there is no way to convert that reference to a single machine register. The reload pass prevents subreg expressions such as these from being formed. The first operand of a subreg expression is customarily accessed with the SUBREG_REG macro and the second operand is customarily accessed with the SUBREG_WORD macro.
(scratch:m)
This represents a scratch register that will be r